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Received: 17 February 2015 / Accepted: 7 September 2015 / Published online: 20 January 2016

� The Japan Wood Research Society 2016

Abstract The paper is concerned with timber construc-

tions. The paper presents a solution of a rod deflection

differential equation. The rod deflection equation describes

a compressed rod to which a transverse force is applied.

The equation accounts for the influence of shearing forces

on the magnitude of displacement. Based on the equation,

the critical force and the rod deflection function at the rod’s

initial curvature defined by a sinusoid were determined.

Having found the rod deflection function and the critical

force, a formula for the instability factor kGc was derived to

account for the influence of shear strain. The paper

demonstrates in which particular cases it is necessary to

take into account the influence of deflection caused by

shearing on the critical load bearing.

Keywords Wood constructions � Shear strain � Instability

factor

Notations

rc,0,d Maximum compressive stress

P Compressive force

A Cross-sectional area

ymax Maximum deflection caused by compressive

force P

fc,0,k, f
d
c;0;k

Specific compressive strength for wood

along fibres

zmax Distance from the neutral axis to external

fibre

i Radius of inertia

y(x) Deflection function

EI Stiffness of a rod

E Modulus of elasticity

I Moment of inertia

M(x) Bending moment

a Maximum initial curvature of a rod

lc Rod’s buckling length

kc Instability factor

rc,crit Critical stress

l Energetic shear coefficient

G, G(A) Modulus of shear strain

T(x) Shear force

q(x) Transverse load

l Rod’s length

Pe, P
G
e

Critical forces

fc;0;d Calculated compressive strength for wood

along fibres

kGc Instability factor

E0:05, Ed
0:05

5 % quantile of elasticity modulus for wood

Id Moment of inertia for wood

Imd Moment of inertia for wood-based material

Ed Modulus of longitudinal elasticity for wood

Emd Modulus of elasticity for wood-based

material

A, Ad Cross-sectional area of wood

Amd Cross-sectional area of wood-based material

k Rod’s slenderness

n Safety factor

ad, amd Energetic shear deformability

Emd
0:05

5 % quantile of elasticity modulus for wood-

based material

f mdc;0;k
Specific compressive strength for wood-

based material along fibres
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S(z) The static moment of the cut-off part of a

cross-section

b(z) The width of a cross-section in the distance z

from the neutral axis

Gd
0:05

5 % quantile of shear modulus for wood

Gmd
0:05

5 % Quantile of shear modulus for wood-

based material

ss,md(As,md) Shear stress at the web and walls made of

wood-based material

sp,d(Ap,d) Shear stress at wood flanges, shear stress at

the wood part of the flange

sp,md(Ap,md) Shear stress at the wood-based part of the

flange

As,md The cross-sectional area of the web, and the

walls

Ap,d The cross-sectional area of the wood flange,

the cross-sectional area of the wood part of

the flange

Ap,md The cross-sectional area of the wood-based

part of the flange

e Linear deformation

EE Experimental modulus of elasticity

Introduction

Civil engineering computations according to second-order

theories can be carried out in two ways. In the first method,

we assume that normal stresses are the sum of all stresses

resulting from compressive force and stresses caused by

bending moment. Bending moment is conceived as

depending on the kind of transverse load and the magnitude

of longitudinal force applied at the eccentricity of loads

that results from the shape of a deformed rod’s axis.

In the second method which is analysed in the present paper,

normal stress is determined using a formula in which the first

term defines stress that is the result of compressive stresses

caused by longitudinal force divided by instability factor kc and

the second term defines stress caused by bending moments

which, in this case, solely depend on transverse loads. Second-

order effects are expressed in the formula used to determine

stress with the second method as values of instability factor kc.

The factor can be basically determined with two methods: first,

using second-order rod analysis described with a sinusoid and

second, using longitudinal force applied at the eccentricity of

loads. The paper focuses on the first method. The calculation of

the instability factor kc with the second method was presented

in the author’s different paper.

Compared to steel structures, wood structures have a

relatively high ratio of longitudinal modulus of elasticity

(Young’s modulus) to shear modulus, which for C24 tim-

ber is
E

G
¼ 16. Therefore, any analysis of timber structures

and, particularly, any analysis of structures made of wood

and wood-based composite materials calculated using first-

and second-order theories should also consider the influ-

ence of shear strain on critical load. For steel structures, the

ratio of Young’s modulus to shear modulus is very low,
E

G
¼ 2:5, which means that shear strain effects on critical

load bearing capacity and displacement in static analysis of

steel elements are negligible.

The study presents how to derive a formula for the

instability factor kGc which considers the influence of shear

strain. The formula is derived using a differential equation

of a deformed axis of a rod which accounts for the influ-

ence of shear strain on displacement values.

A comparative analysis was conducted on the magnitude

of instability factors kGc and kc with and without shear

strain. The analysis seems to indicate the need to consider

the influence of shear strain while determining critical load

bearing capacity. It is of particular importance in any

analysis of wood and wood-based constructions. The study

is based on Timoshenko’s Theory of Elastic Stability,

Timoshenko and Gere [1].

Determination of instability factor kc; the state
of the art

The inequality which is the starting point for determining the

instability factor kc is one which describes the maximum

compressive stress in external fibres excited by the longitu-

dinal force P acting at the eccentricity of loads. It is assumed

that in timber work such stress forces should be smaller or

equal to wood specific compressive strength fc,0,k:

rc;0;d ¼
P

A
1 þ 1

c
ymax

� �
� fc;0;k; ð1Þ

where

c ¼ I

A � zmax

¼ i2

zmax

ð2Þ

The function ymax is determined using the differential

equation of the beam deflection which has the following

form:

d2y xð Þ
dx2

þ k2y xð Þ ¼ � 1

EI
M xð Þ; ð3Þ

where k2 ¼ P

EI
. The function ymax is determined for a rod’s

initial curvature defined by a sinusoid which can be given
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by ymax ¼ a

1 � P

Pe

where Pe ¼
p2EI

l2c
. Substituting

ymax ¼ a

1 � P

Pe

into Eq. (1), after transformations we receive

kc ¼ 0:5 1 þ 1 þ a

c

� �
kE

h i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 1 þ a

c

� �
kE

h i2

�4kE

r( )
;

ð4Þ

where

kE ¼ rc;crit

fc;0;k
ð5Þ

Formula (4) can be transformed to a form that is to be found

in the Eurocode 5 standard [2]. In order to do that, it must be

multiplied and divided by the complex conjugate expression.

The method of determining the rod’s initial curvature

was given in section ‘‘Determination of initial maximum

curvature of the rod a’’.

Derivation of a differential equation of rod
deflection with shear strain

The differential equation was derived based on Timosh-

enko’s theory, Timoshenko and Gere [1]. The relation

between the deflection function and bending moments can

be written as

d2yM xð Þ
dx2

¼ � 1

EI
Mc xð Þ; ð6Þ

where Mc(x) is a bending moment excited by the transverse

force and the longitudinal force P causing instability:

Mc xð Þ ¼ M xð Þ þ P � y xð Þ ð7Þ

The relation between the deflection function and the

shear force in the rod is based on the equation of the

potential energy of the system induced by shear in

Vp ¼ l
Rl
0

Tc xð Þ½ �2

2GA
dx and can be given by

d2yT xð Þ
dx2

¼ l
GA

d

dx
Tc xð Þ ð8Þ

In Eq. (8) Tc(x) is the total shearing force which accom-

panies bending. The formula for shear force can be

obtained by differentiating Eq. (7) and can be written as

Tc xð Þ ¼ T xð Þ þ P
dy xð Þ
dx

ð9Þ

Then the total curvature of the rod is the sum of all

curvatures induced by bending moments and shear force:

d2y xð Þ
dx2

¼ � 1

EI
M xð Þ þ Py xð Þ½ � þ l

GA

d

dx
T xð Þ þ P

dy xð Þ
dx

� �

ð10Þ

Assuming that
dT xð Þ
dx

¼ �qðxÞ after transformations, we

obtain

d2y xð Þ
dx2

þ k2y xð Þ ¼ � 1

EI 1 � lP
GA

� �M xð Þ � l

GA 1 � lP
GA

� � q xð Þ;

ð11Þ

in which

k2 ¼ P

EI 1 � lP
GA

� � ð12Þ

The equation was solved twice for two cases of static work of

the beam. The first solution was found for a beam compressed

with a longitudinal force P. The second solution was found

for the beam compressed with a longitudinal force P at its

initial curvature defined by a sinusoid. While in the former

case a homogeneous equation was analysed, the latter was an

inhomogeneous equation. The homogeneous equation was

used to determine the displacement function and the critical

force. The displacement function was derived to be later used

to solve the inhomogeneous equation. The critical force was

derived to compare it with the critical force found in the

inhomogeneous equation. The beam deflection function at its

initial curvature defined by a sinusoid derived from the

inhomogeneous equation was later used to determine the

instability factor kGc ; which can be used to calculate stress in

complex structures according to the second-order theories and

taking into account shear strain.

Determination of deflection function and critical
force for a rod loaded with longitudinal force P

A solution of the homogenous equation.

Determination of the displacement function y(x)

Since, in this case, there is no transverse load M(x) = 0 and

q(x) = 0, Eq. (11) takes the following form:

d2y xð Þ
dx2

þ k2y xð Þ ¼ 0 ð13Þ

The equation was solved using the operational calculus

based on the Laplace transform Osiowski [3]. The fol-

lowing formula was obtained:

y xð Þ ¼ w0 cos kxþ w1

1

k
sin kx ð14Þ
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Function (14), i.e. the solution of the homogeneous equa-

tion, is used below to solve the inhomogeneous equation.

Determination of critical force PG
e

In order to satisfy the boundary conditions y(x = 0) and

y(x = l) = 0 we have in Eq. (14) w0 = 0 and w1 equals

zero or that the argument value of the sine function at the

point x = l k�l is k�l = n�p. Substituting k to the equation,

where k2 ¼ P

EI 1 � lP
GA

� � and n = 1, we obtain a formula

for the critical force P ¼ PG
e :

PG
e ¼ Pe

1 þ Pe

l
GA

; ð15Þ

where

Pe ¼
p2EI

l2c
ð16Þ

Equation (15) can also be found in Timoshenko and Gere [1].

Determination of the rod deflection function
compressed with the force P at its initial curvature
defined by a sinusoid.
Solution of the inhomogeneous equation

If in Eq. (11) M xð Þ ¼ P � a � sin
p
l
x, qðxÞ ¼ �d2MðxÞ

dx2
¼

p2 � a � P
l2

� sin
p
l
x after transformations we obtain

d2y
h
xð Þ

dx2
þ k2y

h
xð Þ ¼ � 1 þ Pe

l
GA

� �
k2a sin

p
l
x ð17Þ

The equation was solved using the operational calculus

based on the Laplace transform Osiowski [3]. A solution of

the equation, using Eq. (14), is the following function:

y
h
xð Þ ¼ w0 cos kxþ w1

1

k
sin kxþ

k2l2 1 þ Pe

l
GA

� �
p2 � k2l2

a sin
p
l
x

�
k2l2 1 þ Pe

l
GA

� �
p2 � k2l2

a sin kx ð18Þ

Boundary conditions have the following form: y
h

0ð Þ ¼ 0,

y
h
lð Þ ¼ 0. The deflection function after taking into consider-

ation the boundary conditions and after adding the initial

curvature defined by the sinusoid y ¼ a sin
p
l
x can be given by

y xð Þ ¼ a

1 � P

PG
e

sin
p
l
x; ð19Þ

where the critical force PG
e is PG

e ¼ Pe

1 þ Pe

l
GA

, Pe ¼
p2EI

l2c
.

The critical force PG
e , which was derived from the equation,

is the same as that given by Eq. (15), which was derived

from the homogenous equation.

Determination of the factor kGc

The instability factor kGc was determined based on the

author’s original derivation, based on Timoshenko’s theory

presented in Timoshenko and Gere [1]. To derive the for-

mula, we use the beam deflection equation at the beam’s

initial curvature defined by a sinusoid, Eq. (19). The

maximum deflection ymax is

ymax ¼ a

1 � a 1 þ Pe

l
GA

� � ; ð20Þ

where a ¼ P

Pe

. Equation (20) is substituted into the formula

for maximum compressive stress rc,0,d given by (1), and

then we obtain the following inequality:

rc;0;d ¼
P

A
1 þ a

c

1

1 � a 1 þ Pe

l
GA

� �
2
64

3
75� fc;0;k ð21Þ

Dividing the numerator and denominator of the expression

a ¼ P

Pe

where Pe ¼
p2EI

l2c
by A and assuming that

rMID ¼ P

A
, after transformations the coefficient a is a ¼

rMID

rc;crit

where rc;crit ¼
p2E0:05

k2
and k ¼ lc

i
. Substituting the

value of a and rMID ¼ P

A
into Eq. (21), we obtain

rc;0;d ¼ rMID 1 þ a

c

1

1 � rMID

rc;crit

1 þ Pe

l
GA

� �
2
64

3
75� fc;0;k

ð22Þ

We are seeking the mean value of compressive stress rMID

causing in external wood fibres maximum stress equal to

the elastic limit. In wood constructions, maximum stress

rc,0,d values are equal or smaller than the compressive

strength for wood along fibres fc,0,k. This inequality can

be solved by finding the value of rMID. After transforma-

tions, we obtain the following quadratic inequality:

r2
MID� fc;0;kþ 1þa

c

� � rc;crit

1þPe

l
GA

2
64

3
75rMIDþ fc;0;k

rc;crit

1þPe

l
GA

�0:
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By comparing the expressions to zero, we obtain a

quadratic equation relative to rMID. Because the discrimi-

nant of the trinomial square D is always greater than zero

D[ 0, the equation has two real roots rG
MID 1ð Þ and rG

MID 2ð Þ:

rGMID 1ð Þ 2ð Þ ¼ 0:5 fc;0;k þ 1 þ a

c

� �
� rGc;crit

h in

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fc;0;k þ 1 þ a

c

� �
� rGc;crit

h i2

�4fc;0;k � rGc;crit

r )
; ð23Þ

where

rGc;crit ¼
rc;crit

1 þ Pe �
l
GA

ð24Þ

The inequality is satisfied if rMID belongs to the interval

rMID 2 �1; rG
MID 1ð Þ

E�
[ rG

MID 2ð Þ

D
;þ1

�
. Taking into fur-

ther analysis the smaller root rG
MID 1ð Þ given by Eq. (23), the

following inequality is obtained: rc;0;d ¼
P

A
� rGMID 1ð Þ. By

transforming the inequality and introducing the safety factor

which is defined by a norm, we obtain a maximum com-

pressive stress equation at a longitudinal force P causing

buckling: rc;0;d ¼
P

A � kGc
� fc;0;d. The instability factor kGc in

the equation is determined in the following manner. Let us

assume that the stress rG
MID 1ð Þ is a part of characteristic wood

strength fc,0,k rGMID 1ð Þ ¼ kGc � fc;0;k and hence we have

kGc ¼
rG

MID 1ð Þ
fc;0;k

ð25Þ

By substituting (23) into (25) we obtain a relation defining

the instability factor kGc

kGc ¼ 0:5 1 þ 1 þ a

c

� �
kGE

h i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 1 þ a

c

� �
kGE

h i2

�4kGE

r )(
;

ð26Þ

where

kGE ¼
rGc;crit

fc;0;k
ð27Þ

The stress rGc;crit based on formula (24) is

rGc;crit ¼
rc;crit

1 þ rc;critA � l
GA

ð28Þ

The influence of shear strain is expressed in Eq. (28) by the

coefficient 1 þ rc;critA � l
GA

. After substituting rGc;crit ¼

rc;crit

1 þ rc;critA � l
GA

and then rc;crit ¼
p2E0:05

k2
into Eq. (27), it

can be written as:

kGE ¼ p2 E0:05

fc;0;k
k2 þ l

GA
p2E0:05A

h i�1

ð29Þ

Equation (29) applies to constructions made of wood.

While analysing composite elements made of wood and

wood-based materials, into functions k, A in Eq. (29), I ¼

Id þ Imd
Emd

Ed

and A ¼ Ad þ Amd

Emd

Ed

should be substituted to

determine stress in wood and I ¼ Imd þ Id
Ed

Emd

and A ¼

Amd þ Ad

Ed

Emd

should be substituted to determine stress in

wood-based materials. An additional assumption was also

made that when analysing wood elements, ad should be

used instead of
l
GA

in Eqs. (28) and (29) and amd should be

used for wood-based materials. Formulas that define the

functions ad and amd are given below in the paper. Given

the above, the factor kGc with shear strain effect can be

determined using (26). The function kGE in (26) is presented

in Table 1.

Table 1 Set of factors kGE

1.

2.

3.

56 J Wood Sci (2016) 62:52–64
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i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EdId þ EmdImd

EdAd þ EmdAmd

r
ð33Þ

Formula (30) in Table 1 is used to determine normal stress

for wood in a wood element.

Formula (31) in Table 1 is used to determine normal

stress for wood in an element with a composite cross-

section, made of wood and wood-based materials.

Formula (32) in Table 1 is used to determine normal stress

for a wood-based material in an element with a composite

cross-section, made of wood and wood-based materials.

Formula (26), just like Eq. (4), can be transformed to a

form that is to be found in the Eurocode 5 standard [2].

However, formula (26), contrary to the formula in the

standard, will contain the coefficient 1 þ rc;critA � l
GA

:

Determination of initial maximum curvature
of the rod a

Based on the literature (Eurocode 5 standard [2]), while

determining the instability factor kc without shear strain,

the expression
a

c
was substituted with b

ffiffiffiffiffiffiffiffiffiffi
fc;0;k

rc;crit

s
� 0:3

 !

where the critical stress rc;crit ¼
p2E0:05I

k2
depends on the

critical force Pe ¼
p2E0:05I

l2c
. The coefficient b is b = 0.2

for solid wood and b = 0.1 for glued laminated wood.

Therefore, for determination of the instability factor kGc

with shear strain, the author suggests the expression
a

c
to be

substituted with b

ffiffiffiffiffiffiffiffiffiffi
fc;0;k

rGc;crit

s
� 0:3

 !
where the critical

stress rGc;crit ¼
rc;crit

1 þ adrc;crit � A
depends on the critical force

PG
e ¼ Pe

1 þ ad � Pe

. Hence, we have that:

In case of constructions made of wood and wood-based

materials, in Eqs. (34) and (35) A should be substituted

with either A ¼ Ad þ Amd

Emd

Ed

or A ¼ Amd þ Ad

Ed

Emd

depending on whether stress is determined for wood or

wood-based materials, respectively.

When determining stress in wood-based materials, in

Eqs. (34) and (35), the wood strength fc;0;k and 5 %

quantile of modulus of elasticity for wood E0.05 should be

substituted for the wood-based material strength f mdc;0;k and

5 % quantile of modulus of elasticity for the wood-based

material Emd
0:05. Also, in the same formulae, the coefficient

ad should be substituted with amd. The expression c is

defined with Eq. (2).

Calculation of coefficients ad and amd

The method of calculating coefficients ad and amd is based

on the author’s own analyses. As the starting equation to

determine ad and amd coefficients, the following potential

energy caused by shear was assumed Piechnik [5]:

Ep ¼
Z l

0

ZZ
A

1

2G Að Þ s
2dydz

2
4

3
5dx ð36Þ

For elements made of the same material, the shear strain

modulus G(A) can be placed before the sign of the double

integral in Eq. (36), which means that in this case we may

apply the energetic shear coefficient Jakubowicz and Orłoś

[4], Piechnik [5] and Bielajew [6]:

l ¼ A

I2

ZZ
A

S2 zð Þ
b2 zð ÞdA ð37Þ

For elements made of materials with different modulus

of shear strain, e.g. timber and plywood, the G(A) values

cannot be placed before the sign of the double integral,

which is why the energetic shear coefficient cannot be

determined. Therefore, in this case the author suggests to

use the term, introduced by the author himself, of energetic

shear deformability amd and calculate it from Eq. (38)

based on Eq. (36).

amd ¼
1

T2 xð Þ

ZZ
A

1

G Að Þ s
2dA; ð38Þ

(34)

(35)
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where

s ¼ T xð Þ � S zð Þ
I � b zð Þ ð39Þ

Equation (38) was derived based on Piechnik [5].

For elements made of the same material, energetic

shear deformability ad can be obtained from equation

ad ¼
l
GA

, whereas for elements made of different mate-

rials, energetic shear deformability amd should be used

instead of
l
GA

.

The coefficients ad and amd were determined for three

most common cross-sections; a rectangular cross-section

made of timber, a composite I-section with a wood-based

web and for a box section with wood-based walls (Fig. 1).

Case 1: Fig. 1a

ad ¼
1:2

Gd
0:05 � b � h

ð40Þ

Case 2: Fig. 1b

amd ¼ as;md þ ap;d ð41Þ

as;md ¼
1

T2 xð Þ

Zþ h
2
�tð Þ

� h
2
�tð Þ

Zþg
2

�g
2

s2
s;md As;md

	 

Gmd

0:05

dydz; ð42Þ

where

ss;md As;md

	 

¼

T xð Þ g

2

h

2
� t

� �2

�z2

" #
þ bt

2
h� tð Þ Ed

Emd

( )

g h� 2tð Þ3

12
þ bt

1

2
h2 � ht þ 2

3
t2

� �
Ed

Emd

" #
g

ð43Þ

ap;d ¼
2

T2 xð Þ

Zh2

h
2
�tð Þ

Zþb
2

�b
2

s2
p;d Ap;d

	 

Gd

0:05

dydz ð45Þ

Fig. 1 Three cross-sections

used for determining the

coefficients ad and amd.
a Rectangular cross-section

made of timber. b Composite

I-section with a wood-based

web. c Composite box section

with wood-based walls

as;md ¼

h� 2tð Þ bt

2
h� tð Þ Ed

Emd

þ g

2

h

2
� t

� �2
" #2

� g

3

bt

2
h� tð Þ Ed

Emd

þ g

2

h

2
� t

� �2
" #

h

2
� t

� �2

þ g2

20

h

2
� t

� �4

8<
:

9=
;

Gmd
0:05

g h� 2tð Þ3

12
þ b � t 1

2
h2 � ht þ 2

3
t2

� �
Ed

Emd

" #2

g

ð44Þ
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where

sp;d Ap;d

	 

¼

T xð Þb
2

h2

4
� z2

� �

bt
1

2
h2�htþ2

3
t2

� �
þg h�2tð Þ3
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Case 3: Fig. 1c

amd ¼ as;md þ ap;d þ ap;md ð48Þ
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In any analysis of I-sections and box sections made of

wood, the following values of
Emd

Ed

¼ 1,
Ed

Emd

¼ 1 and

Gmd
0:05 ¼ Gd

0:05 should be used in the above formulae.

A comparative analysis of instability factors kGc
and kc determined with and without shear strain
depending on the kind of a section

A comparative analysis was conducted for two instability

factors kGc and kc determined with and without shear strain.

The analysis was performed for a grid structure which is

the subject of the author’s monograph on steel-wood grid

structures. The structure is presented in Fig. 2.

First, beams of the structure were analysed and then

columns of the grid structure. Sections made of wood and

composite sections made of wood and wood-based mate-

rials were analysed according to Figs. 3a–j.

10 types of beam cross-sections were analysed: wood

sections according to Figs. 3a–f and composite wood and

wood-based material sections according to Figs. 3g–j. The

sections presented in Figs. 3a–f show beams of the struc-

ture whereas sections according to Figs. 3g–j refer to cal-

culations of both beams and columns, with dimensions of

the webs and walls given in brackets apply to the analysis

of the columns. All dimensions shown in Figs. 3a–j are

given in millimetres.

The predefined and analysed I- and box-sections

according to Figs. 3c, d, g, h have the same width b as the

basic rectangular section analysed in this study according

to Fig. 3a. The I- and box-sections according to Figs. 3e, f,

i, j have the side ratio of
h

b
¼ 1.

It was assumed that the webs of I-sections and the walls

of box sections (Figs. 3g–j) were made of plywood, par-

ticle board and fibre board. The thickness of webs in the

I-sections and walls in the box sections was selected so that

they would be able to carry transverse forces applied on the

beams of the grid structure. Given no transverse load, the

magnitude of the shear force is only dependent on the

compressive force. Therefore, webs and section walls were

assumed to have smaller thickness dimensions: 10 mm for

the webs and 5 mm for the walls, which should satisfy

strength requirements. The analysis of beams and columns

to determine the course and maximum values defined

below the function F(k) F(n) was conducted for 11 values

of rod’s slenderness. The following values of rod’s slen-

derness were assumed: k = [17.68, 20, 30, 40,…,100,

150], where k = 17.68 and k = 150 are the minimum and

maximum slenderness available in the literature. It was

assumed that the elements were made from C24 wood. The

sizes of the cross-sections were selected so that the flexural

rigidity EI was approximately the same for all the analysed

cross-sections. The calculations were made using the fol-

lowing values of the shear strain modulus Gm,0,mean con-

tained in Table 2.

The values of the instability factor kGc with the shear

strain of the factors kc without shear strain and the function

F kð Þ ¼ kc � kGc
kc

� 100% F nð Þ ¼ kc

kGc
� 1

� �
� 100% were

determined using the algorithm in Table 3.

The function F(k) determines the percentage differences

between kGc and kc, depending on rod’s slenderness k.

The function F(n) determines the degree to which the

load bearing capacity has been exceeded if in the formula

n ¼ P

A � kc � fc;0;d
the coefficient kGc will be used instead of

kc. While deriving formula (65) in Table 3 it was assumed

that if the formula of the load bearing capacity contains the

coefficient kc; then it is used in 100 % (n = 1).

A list of determined functions F(k) and F(n) are pre-

sented in Tables 4 and 5.
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4g gþ 1

2
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3
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Fig. 2 Timber-steel grid structure for the analysis of instability

factors kGc and kc
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Experimental determination of factors kGc and kc

To determine the factors kGc and kc experimentally for their

comparison with the factors obtained from a theoretical

analysis, one needs to design the research model first.

Then, the factors can be determined using, for example, the

two methods described below.

Southwell method

The method assumes that the designed rod is compressed

with a load smaller than critical and that the rod has a

certain initial curvature a. It is based on the Eq. (66) of

Thimoshenko and Gere [1], in which the deflection ymax

depends on the given compressive force P:

Fig. 3 Cross-section of the beams and columns used for determining

the instability factors kGc and kc. a Wooden rectangular cross-

section. b Wooden circular cross-section. c Wooden narrow I-sec-

tion. d Wooden narrow box cross-section. e Wooden wide I-sec-

tion. f Wooden wide box cross-section. g Narrow I-section with a web

made from wood-based material. h Narrow box cross-section with

walls made from wood-based material. i Wide I-section with a web

made from wood-based material. j Wide box section with walls made

from wood-based material
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ymax ¼ a

Pe

P
� 1

ð66Þ

When calculating deflection with shear strain, we can

use an equation analogous to the Eq. (66) in which, instead

of the force Pe there is a force PG
e . This equation can be

derived from the Function (18) which satisfies given

boundary conditions. Given the above, the critical force PG
e

can be determined from Eq. (67):

PG
e ¼ P 1 þ a

ymax

� �
ð67Þ

depending on the compressive force P and deflection ymax,

caused by the force and occurring at half the length of a

pivotally supported rod. To determine forces PG
e , values of

deflection ymax must be measured at given values of force

P. To find an experimental value of the instability factor

kGc , the force PG
e should be divided by the cross-sectional

area A, thus obtaining rGc;crit. Then, the factor kGE should be

determined from Eq. (27) and the sought factor kGc from

Eq. (26).

Deformation method

This method is based on the equation determining com-

pressing stress at a given force P causing buckling:

rT ¼ P

A � kGc
� fc;0;d ð68Þ

Table 2 The values of shear strain modulus Gm,0,mean [7–9]

Type of material Gm,0,mean (MPa)

1. Wood 690

2. Plywood 550

3. Particle board 860

4. Fibre board 2000

Table 4 Analysis of beams

F(k) (%) F(n) (%)

F(k)MIN F(k)MAX F(n)MIN F(n)MAX

1. 0.80 3.64 0.81 3.77

2. 1.80 10.09 1.83 11.22

3. 1.00 6.44 1.01 6.88

4. 0.51 3.10 0.51 3.20

1. section made of wood

2. composite section made of wood and plywood

3. composite section made of wood and particle board

4. composite section made of wood and fibre board

Table 5 Analysis of columns

F(k) (%) F(n) (%)

F(k)MIN F(k)MAX F(n)MIN F(n)MAX

2. 3.62 23.52 3.75 30.75

3. 2.17 15.84 2.22 18.82

4. 1.03 7.50 1.04 8.11

2. composite section made of wood and plywood

3. composite section made of wood and particle board

4. composite section made of wood and fibre board

Table 3 Functions F(k) and F(n) algorithm

58

59
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62

26

58

61

63

4

64

65
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In this method the values of compressive force, P should be

adjusted so that they would cause appropriate values of

theoretical normal stress rT in external wood fibres at half

the length of a pivotally supported rod which should be

smaller than the assumed maximum stress. When the

model is made, with a certain imperfection a and the

measuring equipment is installed in place (e.g. electrofu-

sion tensometers) where the maximum normal stress is

thought to occur at half the length of the rod and after the

introduction of values of the force P (according to the

project design), measurements must be made to obtain

appropriate linear deformations e. By multiplying the

deformation by the elasticity modulus EE determined in

material tests, we receive the appropriate stress rE = EE�e.
The experimental factor can be determined with Eq. (69),

based on Eq. (68) replacing the stress values rT with stress

values rE.

kGc ¼ 1

e
P

EEA
ð69Þ

Both presented methods allow to determine instability

factors kGc and kc for a given model of compressed column

and specific load rate.

It would be recommended to calculate the two factors kGc
and kc using both methods to determine which one is more

precise.

Summary and conclusions

1. The following conclusions can be drawn from the

conducted comparative analysis:

1:1 The functions F(k) and F(n) when analysing the

columns assume values larger compared to those

obtained in the analysis of beams. This is due to

the fact that the webs of I-sections and the walls

of box sections may have in case of unloaded

columns significantly smaller thickness than the

webs and walls of beams to which transverse

load was applied. Decreased thickness values

directly affect the magnitude of energetic shear

deformability ad and amd, notions defined in the

paper, and consequently increase the differences

between the compared factors kc and kGc and

affect the growth of the functions F(k) and F(n).

1:2 In the analysis of beams and columns of the

structure, the functions F(k) and F(n) have

minimum values for composite sections made

of wood and fibreboard and maximum values for

composite sections made of wood and plywood.

1:3 Owing to the shape of the cross-section, in case

of wood and wood-based materials the functions

F(k) and F(n) have the minimum values for the

narrow I-section and the narrow box and the

maximum values for the wide I-section and the

wide box. The values of the function F(k) for the

narrow I-section and the narrow box differ

insignificantly. The values of the function

F(k) for the wide I-section and the wide box

also differ only insignificantly. The same applies

to the function F(n). In case of wood elements

the functions F(k) and F(n) have the minimum

values for rectangular and circular cross-sec-

tions, and the maximum values for the wide

I-section and the wide box.

1:4 Owing to the slenderness of the analysed

elements, the functions F(k) and F(n) have the

maximum values for thick columns and the

extremum for the slenderness of k = 60. The

minimum values of the functions F(k) and

F(n) occur at the slenderness of k = 150.

1:5 The conducted comparative analysis shows the

need to use the formulae presented in the paper

instead of those found in the literature. As was

shown, this is particularly important in case of

columns with small slenderness and cross-sec-

tion, composite wide I-sections and wide box

sections made of wood and plywood. In this case,

the percentage differences between the compared

factors kc and kGc are F(k)max = 23.52 % and the

load bearing capacity is exceeded by

F(n)max = 30.75 %.

2. For the formulae (30)–(32), the author substituted the

constants E0,mean and G0,mean with E0.05 and G0.05

assuming such a factor of safety k that E0:05 � E0;mean

k

and G0:05 � G0;mean

k
; where k = 1.5, E0,mean is the

mean modulus of elasticity along the fibres, G0,mean is

the mean modulus of shear strain, E0.05 is 5 % quantile

of modulus of elasticity along the fibres and G0.05 5 %

quantile of modulus of shear strain.

3. As stated in point 2, while calculating the instability

factor kc, E0.05 5 % quantile of modulus of elasticity

should be used instead of E0,mean the mean modulus of

elasticity. The introduction of 5 % quantile of modulus

of elasticity E0.05 into Eq. (28) results in lowering the

values of the critical stress rc,crit in the numerator, and

thus in lowering the magnitude of the critical stress

rGc;crit and the instability factor kGc which positively

affects safety. The substitution of E0.05 into E0,mean to

the critical stress rc,crit in the denominator of Eq. (28)

increases the critical stress rGc;crit and the instability

factor kGc which has adverse effect on safety.
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Therefore, the author is of the opinion that a discussion

should be held whether an additional safety factor n

with the value of n C 1 should be introduced into

Eqs. (30)–(32) or not. Percentage differences between

the factors kGc and kc were determined for n = 1. For

n[ 1 these differences are bound to be greater.

4. Although the cross-sections of axially compressed

columns presented in Figs. 3g–j are theoretically

possible, they are rarely used. Such cross-sections

can be used for rods in which the longitudinal force has

a decisive effect on the magnitude of stress and the

transverse load is insignificant.
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