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Abstract This paper presents a probabilistic method of

evaluating the final moisture content (MC) of lumber

obtained at the end of the kiln-drying process. The final

MC data of three different drying tests conducted in past

studies were analyzed using the bootstrap method. Target

MC was tentatively set below 20 % in the analysis. Two

characteristic parameters representing the final MC were

estimated with bootstrap confidence intervals. These

parameters were the standard deviation (SD) and the per-

centage of the population that met the MC requirement of

less than 20 % (P20). The histograms of the final MC and

the subsequent goodness-of-fit tests revealed that the final

MC data of two drying tests did not follow any classical

probability distributions, including Normal, Log-Normal,

Weibull, and Gamma distributions, thus indicating the need

for nonparametric statistics. The uncertainty of the final

MC could be evaluated with the estimated SD and P20.

After deriving the relationships between P20 and the cor-

responding probability that P20 is not achieved, we

demonstrated how such relationships could provide a kiln

operator with information to facilitate better decision-

making in optimizing a drying schedule.

Keywords Probabilistic evaluation � Final moisture

content � Kiln-drying � Probability distribution � Bootstrap
method

Introduction

Lumber drying is one of the most time- and energy-con-

suming processes in producing lumber products. As the

main purpose of lumber drying is to reduce moisture

content (MC) to a specific target value, the final MC that is

measured at the end of drying is a primary consideration. In

general, a large number of lumber are dried simultaneously

in a batch kiln, and in such a condition, considerable

variability in the final MC occurs [1]. Consequently, after

kiln-drying, a batch may contain an unacceptable number

of lumber pieces that do not meet the requirement of the

appropriate moisture specification [2]. This outcome can

lead to increased costs and the lower rates of lumber

recovery.

To check the variability in the MC, most kiln operators

select a limited number of test samples from the charge, and

measure their MC routinely. The MC information is helpful,

for example, at the end of drying process, in determining

whether or not he or she should stop the kiln containing

thousands of pieces dried simultaneously. However, this

judgement relies largely on the operator’s experience, since

the MC information sampled from the whole charge

involves uncertainty which is difficult to quantify. If the final

MC data can be systematically evaluated in a probabilistic

way, such as data analysis for structural lumber [3–6], the

operator could make an objective and accurate decision in

optimizing the drying schedule.

Understanding the final MC distribution is very impor-

tant in the probabilistic analysis, because classical

Parts of this report were presented at the 64th Annual Meeting of the

Japan Wood Research Society, Matsuyama, March 2014 and the 66th

Annual Meeting of the Japan Wood Research Society, Nagoya, March

2016.

& Ken Watanabe

kenwatanabe@ffpri.affrc.go.jp

1 Forestry and Forest Products Research Institute, 1

Matsunosato, Tsukuba, Ibaraki 305-8687, Japan

2 The Institute of Wood Technology, Akita Prefectural

University, 11-1 Kaieizaka Noshiro, Akita 016-0876, Japan

123

J Wood Sci (2016) 62:479–486

DOI 10.1007/s10086-016-1587-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s10086-016-1587-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10086-016-1587-y&amp;domain=pdf


parametric statistics is based on the assumption of a

specific probabilistic distribution. Rice and Shepard [1]

extensively measured the MC of about 3500 eastern white

pine (Pinus strobus L.) lumbers from 14 kiln charges that

were dried in 7 sawmills. Substantial MC variation existed

within a given charge and between kilns at each sawmill,

and most of the MC distributions were found to be different

from Normal distribution. Milota et al. [7] calculated the

final MC distribution of mixed hem-fir species and

mountain hemlock (Tsuga mertensiana) using a computer

simulation, and showed that a number of slowly drying

boards tended to skew the MC distribution toward the right.

Tenori and Moya [8] and Moya et al. [9] statistically

evaluated a variability in the final MC of kiln-dried lumber

from plantations in Costa Rica. In the statistical analysis,

the normality assumption was assessed, and positive

skewness was found in the distribution [9]. The factors

affecting the variability in the final MC of kiln-dried

lumber was also examined using Pearson’s correlation

matrix [10] and general linear model [11], assuming that

the final MC follows a Normal distribution. Numerical

stochastic models have been intensively developed to

simulate the MC dispersion during and after conventional

drying [12, 13] and radio-frequency vacuum drying

[14–16]. The developed stochastic models could be used to

reproduce the final MC distributions, and some of the

simulated distributions had a long right tail [12, 14]. The

results of the above studies indicate that the final MC does

not necessarily follow a normal distribution. However, as

far as we know, a comprehensive evaluation of the final

MC in relation to probabilistic distribution has not been

carried out. Moreover, the final MC data have been

assessed using only descriptive statistics, such as mean,

standard deviation, coefficient of variation, and the per-

centage of the population whose MC is within or without

the target MC range. The inference of these parameters has

not been attempted at all, which means that no uncertainty

assessment of the final MC has been carried out. Therefore,

establishing a probabilistic evaluation method of the final

MC is an important research endeavor.

The purpose of this study was to develop a probabilistic

method by which to evaluate the final MC measured at the

end of kiln-drying. The final MC data of three different

drying tests conducted in the past works were analyzed

using the bootstrap method.

Materials and methods

First, the bootstrap method, a modern computer-intensive

statistical method, was introduced and its methodology was

briefly described. Second, the probability distributions of

the final MC were examined to determine whether the

parametric approach can be used for the analysis. Third, the

final MC was evaluated with two characteristic parameters,

namely, standard deviation (SD) and the percentage of the

population that met the MC requirement (Preq). SD is the

population parameter representing the variability of the

final MC, whereas Preq is one of the most important indi-

cators that have a significant impact on lumber recovery

and productivity. The uncertainties of SD and Preq were

estimated using the bootstrap method, after which we

demonstrated how to integrate the bootstrap estimate into

the decision-making related to lumber drying.

Principle of the bootstrap method

The bootstrap was first introduced by Efron [17] as a

computer-based simulation method for estimating the

standard error of a parameter estimate. Over the next

decades, the theory and applications of the bootstrap have

been developed [18], and the bootstrap became a very

practical approach to making statistical inferences without

strong parametric assumptions. The bootstrap is a type of

Monte Carlo simulation based on resampling from

observed data; its algorithm is briefly described as follows

[19].

Suppose that a random sample x ¼ ðx1; x2; . . .; xnÞ
from an unknown probability distribution F has been

observed and we wish to estimate a parameter of interest

h ¼ sðFÞ on the basis of x. For this purpose, an estimate

ĥ ¼ sðxÞ is typically calculated from x. Here, sð�Þ is a

function by which to measure a parameter estimate, such

as mean, median, standard deviation, bias, quantiles, and

so on.

Let F̂ be the empirical distribution, putting probability

1/n on each of the observed values xi, i ¼ 1; 2; . . .; n. A

bootstrap sample is defined to be a random sample of size

n, which is drawn with replacement from F̂, say

x� ¼ ðx�1; x�2; . . .; x�nÞ. The star notation indicates that x� is

not the actual data set x, but rather, a randomized or

resampled version of x. Thus, the bootstrap sample x� ¼
ðx�1; x�2; . . .; x�nÞ consists of members of the original data set

ðx1; x2; . . .; xnÞ, with some appearing zero times, some

appearing once, some appearing twice, etc.

Corresponding to a bootstrap sample x� is the bootstrap

replication of ĥ given as follows:

ĥ� ¼ sðx�Þ: ð1Þ

The quantity sðx�Þ is the result of applying the same

function sð�Þ to x� as applied to x.

By generating independent bootstrap samples x�b ðb ¼
1; 2; . . .;BÞ repeatedly, the bootstrap replications ĥ�ðbÞ
corresponding to each bootstrap sample can be obtained as

follows:
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ĥ�ðbÞ ¼ sðx�bÞ; b ¼ 1; 2; . . .B: ð2Þ

From the distribution of ĥ�ðbÞ, the uncertainty of the

parameter estimate ĥ can be estimated, for example, by

measuring the standard deviation or confidence intervals. A

schematic diagram of the bootstrap algorithm is shown in

Fig. 1.

There are several approaches to construct confidence

intervals based on attempts to approximate the per-

centiles of the distribution of ĥ�ðbÞ. Efron’s percentile

confidence intervals [17] are the two values that cut-off

fixed percentages in the tails of the bootstrap distribution

of an estimate. For example, the bootstrap 95 % inter-

vals are the two values that include 95 % of the boot-

strap distribution of an estimate between them. This

notion is justified on the basis of the assumption that a

transformation exists which can convert the bootstrap

distribution of an estimate into a normal distribution

[20]. Thus, in small to moderate samples for asymmetric

or heavy-tailed distributions, the percentile method is

vulnerable [18], and an improved version of the per-

centile method called ‘‘bias-corrected and accelerated

percentile method’’ (BCa) [21] is required. The BCa

adjusts for the median of the distribution of an estimate

that is not equal to the mean and for the standard

deviation of the distribution varying with the mean of

the distribution. A more detailed description of BCa is

provided by Efron [22].

Data preparation

The current study incorporated the final MC data obtained

from three different drying tests reported in the literature

[23, 24]. The drying methods and specimens for each test

are briefly described as follows. All the drying tests were

conventional kiln-drying tests with schedules listed in

Table 1. In drying test 3, the second step with a dry-bulb

temperature of 120 �C for 18 h represents a high-tem-

perature and low-humidity pretreatment, which is effec-

tive in preventing surface checks [25]. Next, 222 boards

[23], 357 square lumbers [24], and 115 square lumbers

[24] were used for drying tests 1, 2 and, 3, respectively.

The summary statistics of the final MC data are listed in

Table 2. In drying test 2, additional drying runs were

conducted by Matsumoto and Ishida [24], so the sample

size was larger than that in the report. The specific wood

species used for the drying tests was sugi (Cryptomeria

Japonica).

Fig. 1 Bootstrap algorithm for

estimating the uncertainty of

parameter estimate ĥ

Table 1 Drying schedules of the three drying tests

Drying test 1 [23] Drying test 2 [24] Drying test 3 [24]

Time (h) DBT (�C) WBT (�C) Time (h) DBT (�C) WBT (�C) Time (h) DBT (�C) WBT (�C)

8 85 85 12 70 70 8 95 95

8 70 67 168 70 65 18 120 90

16 71 67 168 70 60 504 90 60

16 73 67 168 70 55

16 75 67 168 70 50

16 77 68

24 79 68

20 80 68

8 80 75

DBT dry-bulb temperature, WBT wet bulb temperature
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Fitting classical probability distributions

Two goodness-of-fit tests, the Kolmogorov–Smirnov test

(KS test) and the Anderson–Darling test (AD test), were

performed to evaluate whether the final MC data of each

drying test followed classical probability distributions. The

parameters of each probability distribution were estimated

by maximum likelihood, and then subjected to the goodness-

of-fit tests. The classical probability distributions employed

were Normal, Log-Normal, Weibull, and Gamma distribu-

tions. The former three distributions are often used for

strength data of structural lumber [3–6], whereas Gamma

distribution is a standard probability distribution fitted to

continuous data. Moreover, Gamma distribution is used for a

random variable y that has positive values, and its proba-

bility density function is expressed as follows:

f ðy; bÞ ¼ ba

CðaÞ y
a�1e�yb; ð3Þ

where b is a scale parameter, which is the parameter of

interest; a is a known shape parameter; and C(a) is the

complete gamma function defined by the following:

CðaÞ ¼
Z 1

0

xa�1e�xdx; a[ 0: ð4Þ

Horie et al. [3] evaluated the strength data of structural

lumber, and used Chi-square test and KS test as goodness-

of-fit measures. In the current study, however, the Chi-

square test was not used, because the sample data had to be

binned before generating the Chi-square test. As we know,

the value of the Chi-square test statistic is dependent on

how the data are binned. In addition, the Weibull distri-

bution employed in this study was not 3P Weibull but 2P

Weibull, because the theoretical and physical meanings of

the location parameter in 3P Weibull distribution were not

clear [3].

Bootstrap estimation of the characteristic

parameters for the final MC

The final MC data were evaluated with the two charac-

teristic parameters, SD and Preq. In this study, the MC

requirement was tentatively set below 20 %. The SD and

P20 of the final MC were estimated with 100000 bootstrap

replications, and their 95 % confidence intervals were

calculated using the BCa method. The procedure to cal-

culate the bootstrap SD was shown in Fig. 2. Statistical

analysis was performed using the MASS package and the

boot package in R, version 3.2.3 [26].

Results and discussion

Distribution of the final MC

The histograms of the final MC and the fitted probability

distributions are shown in Fig. 3. In all the drying tests, the

distributions of the final MC had a long right tail. A certain

percentage of the population fell above the MC of 30 %.

Moreover, these samples remained wet, thereby demon-

strating the difficulty in uniformly drying sugi lumber.

To examine whether the final MC data followed the

fitted probability distributions (Fig. 3), the goodness-of-fit

tests were performed and their results were listed in

Table 3. In the table, high p values indicate that data

probably follow a probability distribution. As can be seen,

in the case of drying test 1, the final MC data did not follow

any classical probability distribution, which may be

attributed to the heavy-tailed nature of the distribution

(Fig. 3).

In the case of drying test 2, the results of the AD test

suggested that all the probability distribution gave a poor fit

to the final MC data. Although the p value of the KS test

against the Log-Normal null hypothesis was slightly higher

than 0.05, this was not enough to ensure that the data

Table 2 Summary statistics of the final moisture content for all the

three drying tests

Drying test n Mean (%) SD (%) CV P20 (%)

1 [23] 222 16.8 3.7 0.22 92.3

2 [24] 357 16.4 6.4 0.39 80.7

3 [24] 115 13.3 6.1 0.50 89.6

SD standard deviation, CV coefficient of variation, P20 the percentage

of the population that met the moisture content requirement of less

than 20 %

Fig. 2 Procedure to calculate bootstrap standard deviation (bootstrap

SD)
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followed the Log-Normal distribution. The p values in the

AD test were consistently lower than those in the KS test.

Thus, in evaluating whether the data followed the proba-

bility distributions, the AD test tended to judge more

conservatively than the KS test.

Meanwhile, in the case of drying test 3, the p values

against the Log-Normal null hypothesis were much higher

than 0.05 in both the KS test and the AD test. This result

implies that the Log-Normal distribution is a good candi-

date for the distribution of the final MC of drying test 3.

The histograms of the final MC (Fig. 3) and the subse-

quent goodness-of-fit tests (Table 3) revealed that the final

MC data did not necessarily follow a classical probability

distribution. Therefore, the conventional parametric

statistics are of limited use in evaluating the uncertainty of

the final MC. Furthermore, the bootstrap method is thought

to be a preferable alternative to parametric statistics.

Bootstrap estimation of characteristic parameters

for the final MC

The SD of the final MC was estimated by the bootstrap

method (‘‘bootstrap SD’’), and the histograms of bootstrap

SD were depicted for each drying test in Fig. 4. The

uncertainty in the estimated SD can be measured by the

histograms. For example, the bootstrap SD for drying test 1

ranged from 1.2 to 6.3 %, whereas the SD of the sample

was 3.7 % (Table 2). Given that the same drying test was

attempted repeatedly, the SD should be within this range.

This range can be assessed with confidence intervals in a

more probabilistic way. Table 4 lists the 95 % BCa con-

fidence intervals for the bootstrap SD. The coverage

property of this interval implies that 95 % of the time, a

random interval constructed in this way will contain the

true value [19].

Fig. 3 Histograms of the final moisture content (MC) and fitted probability distributions

Table 3 Results of the

goodness-of-fit tests for each

drying test

Drying test Goodness-of-fit test Fitted distribution

Normal Log-Normal Weibull Gamma

1 KS test ** ** ** **

AD test ** ** ** **

2 KS test ** 0.064 ** **

AD test ** ** ** **

3 KS test ** 0.462 * 0.139

AD test ** 0.226 ** 0.061

Numbers represent p values. The p values exceeding 0.05 indicate that null hypothesis was not rejected

with 95 % significance level and that the data may probably follow a probability distribution

KS test Kolmogorov–Smirnov test, AD test Anderson–Darling test

* p values less than 0.05

** p values less than 0.01
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Preq, the percentage of the population that met the MC

requirement, is one of the most important indicators that

have a significant impact on lumber recovery and produc-

tivity. In this study, the MC requirement was tentatively set

below 20 %, and the P20 was estimated by the bootstrap

(‘‘bootstrap P20’’). Similar to the estimated SD, the

uncertainty in the estimated P20 can also be measured with

the 95 % confidence intervals (Table 4).

Suppose that a kiln operator wishes to dry at least a% of

the total population within a batch to less than 20 % MC.

In other words, a is the acceptable percentage, and the

target P20 is a%. The probability that the target P20 of a%
will not be achieved can be estimated from the histograms

of the bootstrap P20 in Figs. 5 and 6. We call this proba-

bility ‘‘operator’s risk’’ (OR), which is expressed as

follows:

OR ¼ Prob P20\af g: ð5Þ

Fig. 4 Histograms of bootstrap standard deviation (bootstrap SD) for each drying test

Table 4 95 % BCa confidence intervals for bootstrap estimates

Drying test SD (%) P20 (%)

1 2.6–5.3 87.8–95.1

2 5.6–7.7 75.9–84.3

3 5.1–7.5 81.7–93.9

BCa bias-corrected and accelerated percentile method, SD standard

deviation, P20 the percentage of the population that met the moisture

content requirement of less than 20 %

Fig. 5 Histograms of bootstrap P20 for each drying test. P20 is the percentage of the population that met the moisture content requirement of less

than 20 %
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As can be seen in Fig. 6, the OR at a% is expressed as

the ratio of the area below a% (A) to the total area (A ? B).

From Fig. 5, the OR was calculated for the whole a to

obtain the OR as a function of target P20 (Fig. 7). In the

case of drying test 1, for example, the OR at 95 and 90 %

are 0.92 and 0.09, respectively. This means that 92 % will

fail trying to dry 95 % of the total population to less than

20 % MC; in comparison, the risk of failure can be dras-

tically reduced to 9 % by changing the P20 from 95 to

90 %. If a kiln operator aims to achieve a target P20 of

95 %, then the current drying operation should be contin-

ued to reduce the MC, because the risk of failure is con-

sidered to be very high. Meanwhile, if a target P20 of 90 %

and the risk of failure of 9 % can be accepted, the kiln

operator makes a decision that the current drying operation

is working well and should thus be stopped. These results

demonstrate that the uncertainty of the final MC could be

evaluated using the bootstrap, and that the relationships

between the target P20 and the OR could provide a kiln

operator with information that can facilitate a better deci-

sion-making in optimizing a drying schedule.

The bootstrap method may not be reliable for very small

sample sizes, regardless of how many bootstrap samples

are generated. Thus, a certain sample size should be

acquired. In this study, the sample size of each drying test

was more than 100, so a sufficient sample size was pre-

pared for the bootstrap analysis.

Conclusions

This study examined the process of evaluating the final MC

of lumber obtained at the end of kiln-drying. The goodness-

of-fit tests revealed that the final MC data do not neces-

sarily follow a classical probability distribution, and that

the conventional parametric statistics are of limited use in

the probabilistic analysis of the final MC. This is the reason

why we utilized the bootstrap method without any

assumptions about the underlying probability distribution.

The bootstrap method may be suitable for analyzing not

only data obtained in the process of lumber drying, but also

the strength data of structural lumber, because the sim-

plicity of the bootstrap method allows its application in a

wide variety of fields.

Our results demonstrated that the bootstrap method is a

powerful approach to evaluate the uncertainty and vari-

ability of the final MC data. The confidence intervals of SD

and P20 were computed from the bootstrap estimates, so

that the uncertainty of these parameters could be assessed.

Based on the relationships between P20 and the corre-

sponding probability that P20 is not achieved, probabilistic

risk assessment of the final MC can be implemented in a

kiln-drying operation. For example, at the end of drying

process, a kiln operator measures the MC of a limited

Fig. 6 Schematic diagram of

Fig. 5. OR operator’s risk, a
acceptable percentage, A area

below a%, B area above a%

Fig. 7 Operator’s risk (OR) as a function of target P20 for each drying test. P20 is the percentage of the population that met the moisture content

requirement of less than 20 %
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number of test samples to know if he or she should stop the

kiln containing thousands of pieces dried simultaneously.

These findings may lead to a higher quality control of kiln-

dried lumber.
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