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Abstract As an important material of making instrument

resonant component, paulownia has a significant influence

on instrument acoustic quality. Using the method of sup-

port vector machine (SVM), an evaluation model for pre-

dicting the Yueqin acoustic quality was developed based

on the wood vibration performance. Generally, the wood

selection in the Yueqin manufacture mainly depends on

observance weighting by hands, knocking and listening by

an instrument technician. The defect in scientific theory

impedes the improvement of Yueqin quality. In this study,

nine Yueqin were fabricated. Based on the information of

their raw materials and Yueqin acoustic quality evaluation,

a prediction model was proposed. In the total 180 groups of

data, 60 groups of data were randomly selected for the

training, 30 groups of data were randomly selected from

the unused data for the verification. The radial basis

function is used to establish the Yueqin soundboard wood

acoustic quality evaluation model and simulate the pre-

diction. The results revealed that the prediction of Yueqin

acoustic quality could be achieved based on the sound-

board wood vibration performance using the MATLAB

simulation. The classification accuracy was 90.00%, indi-

cating that the predicted values were highly consistent with

the experimental values. The models are able to be used to

precisely predict the Yueqin acoustic quality based on the

vibration performance of soundboards.

Keywords Musical instrument quality � Vibration
performance � SVM � Kernel function

Introduction

Due to the good vibration characteristics, wood has been

used as an important resonance instrument material over

the millennia [1]. The unique and appropriate spectrum of

physical properties of wood has made it to be the musical

instrument up to now [2, 3]. As a result of the excessive

consumption of wood, the cost of the musical instrument

increases rapidly. There is a need to look for alternative

materials to make traditional musical instrument. Recently,

as a wood substitute, some wood-based composites were

developed for a violin top plate [1]. However, the perfor-

mance of the new materials is relatively uncertain. It is

therefore desired to develop a model for predicting musical

instrument acoustic quality based on soundboard vibration

performance of raw materials.

The vibration characteristic of wood plays an important

role in affecting the acoustic performance of musical

instrument. To demonstrate that wood is ideally suitable for

the manufacture of idiophones (xylophone bars and

chimes), aerophones (flutes and organs), and chordophones

(violins and zithers), Wegst [3] plotted material property

charts showing acoustic properties, such as sound velocity,

characteristic impedance, sound radiation coefficient and

loss coefficient against one another. A new scheme for

classifying the woods used in stringed instruments was

developed by Yoshikawa [4], which used two regression

lines to clearly discriminate the soundboard wood from
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frame-board wood that were traditionally used for string

instruments.

By investigating the vibration characteristic of wood as

a soundboard, Norimoto et al. [5], Matsunaga et al. [6] and

Kubojima et al. [7–9] found that the wood acoustic

vibration characteristics were significantly affected by

performance parameters, such as the dynamic elastic

modulus E=q, elastic modulus and shear modulus ratio

E=G, acoustic radiation damping coefficient R, and

acoustic impedance x. Violins were ranked into different

grades from the view of acoustic adaptability, esthetic

suitability and comprehensive evaluation using a subjective

appraisal method by Buksnowitz [10]. In addition, the

indexes of material property, including sound velocity,

sound damping, resonance frequency, dynamic elastic

modulus, rigidity, density, ring width, variable coefficient

of tree-ring width, ratio of summer wood, fiber length,

dimensional stability, and analyzed the material perfor-

mance were also measured using multivariate linear

regression method. The main acoustic properties of vene

wood were determined using a test method of free–free

flexural vibration (BING device) by Traore et al. [11].

Inspired from the statistical learning theory, as a pow-

erful classifier, support vector machines (SVMs) have

drawn increasing interest lately for pattern classification

[12]. One of the attractions of SVM classifier is that it has a

solid mathematical foundation using the statistical learning

theory. Andersson et al. [13] addressed the issue of auto-

matic wood defect classification and propose a tree struc-

ture SVM to classify four types of wood knots using

images captured from wood boards. They then put forward

the issue of automatic wood defect classification and pro-

posed a tree structure SVM to classify four types of wood

knots using images captured from those boards. Using

SVM, Hittawe et al. [14] proposed a method for detecting

wood defects such as cracks and knots. Turhan et al. [15]

utilized SVM for the first time as a predictive method for

differentiating species of Salix wood through the biometric

analysis of their anatomy using the wood samples taken

from basal disks of three species. Zhu et al. [16] developed

a method for quantifiably classifying the density of Chinese

Fir samples based on the visible/near-infrared (vis–NIR)

spectrometry and least squares support vector machine.

Furthermore, SVM is widely used in many other fields,

such as geographic information system, and picture pro-

cessing, which has advantages of solving small sample,

nonlinearity and high-dimensional pattern recognition

problems [17, 18]. In this study, Kernel function, i.e. radial

basis function, was used to map the nonlinear problem in

input space to the high-dimension characteristic space.

Being built the linear function in high-dimensional space,

Yueqin soundboard wood acoustic quality evaluation

model is developed. As a result, the Yueqin soundboard

wood property can be precisely predicted. This study also

discusses methods of selecting Yueqin materials and pro-

vides a scientific approach for forecasting the Yueqin

soundboard property.

Materials and methods

Materials and data collection

Yueqin (Fig. 1) made from Paulownia tomentosa foliage

wood was used in this study. Provided by the Tianjin 1st

National Musical Instrument Factory, the wood boards were

air-dried to a moisture content of below 16%. The specifi-

cation and dimension of the soundboard wood are shown in

Table 1. The dual channel fast Fourier transform analyzer,

CF-5220Z, made by Onosokki in Japan was used in the

experiment. The soundmeter (TES-1350A) and acceleration

sensor were used in the test as well. The indexes of dual

channel fast Fourier transform analyzer CF-5220Z are listed

in Table 2. According to the requirements of the instrument

factory, the initial wood material was cut into 36 pieces for

making nine Yueqin soundboards.

A flexural vibration test was used to determine the wood

acoustic vibration properties in this study. The specimen

with longitudinal direction was supported with two foam

supports at both ends. The high sensitivity, wide-band, and

low-noise microphone was placed at one end of the spec-

imen. With a shaft, a rotating blade strokes the specimen at

the other end of the specimen. The sound signals were

collected by the microphone, and then amplified, filtered

and analyzed using a fast Fourier transform (FFT) analyzer

to obtain resonance frequencies. Using the obtained reso-

nance frequencies, the dynamic elastic modulus E=q,
acoustic radiation damping coefficient R, elastic modulus

and shear modulus ratio E=G, acoustic impedance x were

calculated. As a result, the dynamic elastic modulus of the

wood E (GPa) was estimated using Eq. (1). The main

parameters of wood acoustic vibration property are listed in

Table 3.

The dynamic elastic modulus E (GPa) was obtained as

Eq. (1)

E ¼ 48p2L4qf 2

b4nh
2

; ð1Þ

where L is the musical instrument sound board length (m),

q is the sound board density (kg m-3), f is the sound board

resonance frequency (Hz), bn is the relative constant of

wood boundary conditions, h is the sound board thickness

(cm).

The acoustic impedance x is expressed mathematically

as Eq. (2)
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x ¼ qt ¼
ffiffiffiffiffiffi

qE
p

; ð2Þ

R ¼ v

q
¼

ffiffiffiffiffi

E

q3

s

; ð3Þ

where q is the density of the sample wood (kg m-3), t is

the surface wave velocity (longitudinal direction) (m/s),

E is the dynamic elastic modulus of the wood (GPa).

During the experiments, 36 soundboardswere used for the

testing with five times determinations for each board.

Therefore, a total of 180 groups of data were collected. The

acoustic quality (sound loudness, dynamic range, sound

length and tone, etc.) of the instrument products was objec-

tively evaluated by dividing them into three grades (grades 1,

2 or 3) by the experienced experts in music and Yueqin

performers. In each grade, 20 groups of data were randomly

selected for the training, counting to a total of 60 groups (3

grades 9 20 groups for each grade) for the training.After the

training, there were 120 groups of unused data (180 groups–

60 groups) left for the verification. The same as the training

process, ten groups of data were randomly selected from the

unused data in each grade for the verification. Then we used

the 36 boards to make nine Yueqins (two boards for face and

two for back for each Yueqin).

Using MATLAB R2010a as the operating environment,

the Lenovo ThinkPad S230u Twist (Intel corei7 3517U,

CPU basic frequency of 1.9 GHz, internal storage of 8G)

was used as a simulation tool. The dynamic elastic mod-

ulus E=q, elastic modulus and shear modulus ratio E/G,

acoustic radiation damping coefficient R, acoustic impe-

dance x were selected as the inputs, while the three grades

of musical instrument were the outputs.

Fig. 1 The Yueqins for the tests

Table 1 Parameters of soundboard wood

Name Specie Amount

(pieces)

Length (longitudinal)

(cm)

Width (tangential)

(cm)

Thickness (radial)

(cm)

Density

(g cm-3)

Annual

rings

Yueqin Paulownia 36 36.42–39.47 16.41–19.49 0.95 ± 0.02 0.24–0.29 7.52–12.52

Table 2 CF-5220Z Dual channel FFT (fast Fourier transform) ana-

lyzer technical indexes

Index Parameter

Operation frequency 10 mHz–100 kHz

Microphone frequency 20 Hz–20 kHz

Sampling frequency 2.56 times of measurement range

Sampling node 64–4096 (commonly used as 2048)

Frequency distinguish ability 25, 50, 100, 200, 400, 800, 1600 lpi

Microphone sensibility -29 dB ± 3 dB (0 dB = 1v/pa)

Table 3 Main parameters of wood acoustic vibration property for

Yueqin

Sample size E=q E=G R W/106

Average 180 22.75 268.47 18.83 1.21

Standard deviation 180 2.38 55.82 1.09 0.12

E/q the dynamic elastic modulus, R acoustic radiation damping

coefficient, E/G elastic modulus and shear modulus ratio, x acoustic

impedance
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SVM basic design concept

When f(x) is a linear function, it is expressed as

f ðxÞ ¼ w; xh i þ b ¼
X

n

i¼1

wixi þ b; ð4Þ

where b is set over, w is callable weight vector quantity.

The decision rule is that sgnð0Þ ¼ 1. f ðxÞ is hyperplane.

Hyperplane L from Fig. 2 is defined by f ðxÞ ¼ 0, where L

divides input space X into two parts.

Training sample is xif ; yigli¼1, where xi is the ith sample,

yi 2 �1; 1gf . Hyperplane L in the linear classifier

w; xh i þ b ¼ 0, which satisfies

w; xh i þ b� 1 yi ¼ 1; ð5Þ
w; xh i þ b� � 1 yi ¼ �1: ð6Þ

Hyperplane L1 is defined as L1 : w; xh i þ b ¼ 1, yi ¼ 1,

x1 is a note on hyperplane L1; hyperplane L2 is defined as

L2 : w; xh i þ b ¼ �1, yi ¼ �1, x2 is a note on hyperplane

L2 � x1 and x2 satisfy

w; x1h i þ b1 ¼ 1; ð7Þ
w; x2h i þ b2 ¼ �1: ð8Þ

The distance between hyperplane L1 and L2 is ddis,

which can be expressed as

ddis ¼
w

jjwjj ðx1 � x2Þ: ð9Þ

The optimal hyperplane can be formulated into the

following expression,

min
w

wk k
2

2

; ð10Þ

s:t: yi w; xh i þ bð Þ� 1 8i ¼ 1; 2; . . .;N: ð11Þ

Lagrange multiplier method is used to solve the stated

quadratic programming problem, the Lagrange function is,

J w; b; að Þ ¼ 1

2
wTw�

X

l

i¼1

ai yi w; xih i þ bð Þ � 1½ �; ð12Þ

where ai is Lagrange multiplier.

Lagrange function is employed to calculate the mini-

mum value of w, b and the maximum value of ai. w0, b0, a0
on saddle point of the function satisfy

X

l

i¼1

a0iyi ¼ 0; a0i � 0 i ¼ 1; 2; . . .; l; ð13Þ

w0 ¼
X

l

i¼1

yia0ixi; a0i � 0 i ¼ 1; 2; . . .; l: ð14Þ

Substitute (13) into (12), and use Eq. (14) to solve dual

problem of the original optimization problem. The dual

problem is

max
a

� 1

2

X

l

i¼1

X

l

j¼1

yiyjaiaj xi; xj
� �

þ
X

l

j¼1

aj; ð15Þ

X

l

i¼1

yiai ¼ 0; ð16Þ

ai � 0 i ¼ 1; 2; . . .; l: ð17Þ

Classification rule based on optimal hyperplane is

f ðxÞ ¼ sgn
X

l

i¼1

yia
�
i xi; xh i � b0

 !

: ð18Þ

Results and discussion

SVM model establishment

Index selection and establishment of the relevant stan-

dard were based on the important part of instrument

product grade prediction. To appraise the predicted

grade of Yueqin, two professors from Chinese Conser-

vatory of Music who are practiced instrument lists of

national musical instrument were invited to carry out the

evaluation. Based on the Chinese national standard GB/

T16463-1996 [19] (broadcasting program sound quality

subjective evaluation method and technical index), sub-

jective assessment and grade standard adopted by Chi-

nese national quality and CSBTS (Chinese State Bureau

of Quality Technology Supervision) and statistical

approach in Chinese national standard GB/T16463-1996

[19], the nine Yueqin products were ranked into 1–9

grades, in which grades 1–3 were the first grade, grades

4–6 were the second grade, and grades 7–9 were the

Fig. 2 Classification hyper plane on two-dimensional training set

(circles represent the first class of sample data predicted by the

analysis, stars represent the second class of sample data predicted by

the analysis)
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third grade. According to the most significant factors

influencing the acoustic quality of Yueqin, the dynamic

modulus of elasticity E=q, elasticity modulus and shear

modulus ratio E=G, acoustic damping coefficient R, and

acoustic impedance x, four evaluation indexes and three

grades were used to evaluate the Yueqin soundboard

wood vibration performance.

Sample establishment and training

SVM uses nonlinear transformation defined by inner pro-

duct function to transform input space into higher space.

The classification function of SVM is similar to neural

network, taking linear combination of intermediate node as

input; every support vector gets the corresponding inter-

mediate node as shown in Fig. 3. Based on the chosen

kernel function, the corresponding SVM model is obtained

and formula (18) is employed to classify the samples. The

diagrams of the Yueqin soundboard wood forecasting

grade classification training and classification training error

are shown in Figs. 4 and 5.

The main structure of Yueqin soundboard wood vibra-

tion performance predicting model is consisted of dynamic

modulus of elasticity E=q, elasticity modulus and shear

modulus ratio E=G, acoustic damping coefficient R, and

acoustic impedance x.

Forecasting grade assessment and verification

analysis

Using Lisbsvm toolbox, the parameters were set to:

penalty factor C = 100, radical basic function parameter

r = 15, insensitive parameter e = 0.02. The 180-group

experimental data were calculated by the svmtrain tool.

The 20-group data of each grade were used to train the

Fig. 3 SVM designing

principle

Fig. 4 Diagram of Yueqin

soundboard wood forecasting

grade classification training
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model, while the 10-group data of each grade from the

rest 120 groups were used to verify the model (90

groups were selected from the total 180 groups, 60

groups were used to train model, 30 groups were used to

verify the classification).

Table 4 presents the number of incorrect samples by

the comparisons of predicted grade and actual grade,

which is classified as false when the error is greater than

±0.3. Figure 4 shows the diagram of grade classification

training predicted by Yueqin soundboards, which indi-

cates four samples from the 60 Yueqin soundboard wood

samples are false, counting the accuracy of grade clas-

sification training predicted by Yueqin soundboard wood

is 93.33%. Figure 5 illustrates the diagram of grade

Fig. 5 Diagram of Yueqin

soundboard wood forecasting

grade classification training

error

Table 4 Yueqin classification forecast actual grade of incorrect

forecasting sample, forecasting grade and error

Incorrect sample number 25 28 29

Forecasting grade 3.3345 3.3263 3.4426

Actual grade 3 3 3

Error -0.3345 -0.3263 -0.4426

Fig. 6 Diagram of Yueqin

soundboard wood forecasting

grade classification verification
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classification training error predicted by Yueqin sound-

board wood, which shows that the errors of Yueqin

soundboard wood sample fluctuate between ±0.5 and

most errors are between ±0.2. It is confirmed that the

Yueqin grade classification training error is tolerant and

the classification is precise. Figure 6 presents the dia-

gram of grade classification verification predicted by

Yueqin soundboard wood, which shows three samples

from the 60 Yueqin soundboard wood samples are false

and the accuracy of grade classification verification is

90.00%. Figure 7 illustrates the diagram of grade clas-

sification verification error predicted by Yueqin sound-

board wood, which shows errors of Yueqin soundboard

wood sample fluctuate between ±0.5 and most errors are

between ±0.2. It is indicated that the Yueqin grade

classification verification error is tolerant. The classifi-

cation result demonstrates the strong generalization

ability of the model, which can be used to predict the

grade of Yueqin.

In Figs. 4, 5, 6 and 7, the simulation results show that

the grade classification predicted by Yueqin soundboard

wood matches the actual values well, which proves that it

is feasible and reliable to use SVM algorithm predicting

Yueqin quality.

Conclusions

This study tested the vibration performance of the Yueqin

soundboard and extracted the main indexes of wood

acoustic property. Using SVM, based on the soundboard

selection, the forecasting model of the Yueqin soundboard

acoustic quality was developed. It was implemented a

partial prediction of Yueqin acoustic quality and con-

ducted the classification of Yueqin products quality before

the manufacture process. Classification training and

forecasting precision were 93.33% and 90.00%, respec-

tively, which confirmed that the forecasting values were

comparable with the actual values. The developed model

can be used as a practical guideline for estimating

instrument quality.
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