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Abstract The aim of this study was to evaluate the

chemical composition and the dynamic water vapour

sorption properties of Eucalyptus pellita wood thermally

modified in vacuum. For this purpose, wood samples were

thermally modified in a vacuum oven at 160–240 �C for

4 h. Chemical composition were investigated by wet

chemical analysis, elemental analysis, as well as Fourier

transform infrared (FTIR) analysis, and dynamic water

vapour sorption properties were evaluated by dynamic

vapour sorption apparatus. The results showed that holo-

cellulose and alpha-cellulose contents decreased and lignin

and extractives contents relatively increased during the

heat process. Elemental analysis showed a reduction in

hydrogen content and an increase in carbon content. FTIR

analysis indicated that the degradation of hemicellulose

and condensation reactions of lignin occurred. In addition,

the thermo-vacuum resulted in a reduction in the equilib-

rium moisture content of wood during the adsorption or

desorption process. And the sorption hysteresis had a

decreasing trend with increasing treatment temperature.

The development of the hygroscopicity was related to the

increase in the relative content of lignin, the degradation of

the carbonyl groups in xylan and the loss of carbonyl group

linked to the aromatic skeleton in lignin after heat

treatment.
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Introduction

In China, plantation forestry has played an important role

in the supply of raw material to the wood industry. Euca-

lyptus is one of the most important plantation tree species

in China. Eucalyptus wood has a number of desirable

properties, including its attractive color, high density,

strength, and hardness [1]. However, it has a strong

dimensional instability, which is a limitation for its uti-

lization. Heat treatment has been known as a process

enhancing wood properties by reducing moisture absorp-

tion, improving dimensional stability and biological dura-

bility [2–5].

Wood is mainly composed of cellulose, hemicellulose,

lignin, and extractives. The changes of wood properties are

related to its chemical composition. The extent of the

change of wood chemical properties depends on the type of

the heat-treatment process, temperature, time, wood spe-

cies as well as its initial moisture content. The chemical

changes of wood during heat treatment have been evalu-

ated through wet chemical analysis, Fourier transform

infrared (FTIR) spectroscopy, elemental composition,

nuclear magnetic resonance (NMR) [5–8]. Several studies

indicated that heat treatment led to a relative increase in the

contents of lignin and extractives, and a decrease in the

content of holocellulose [9–12]. The increase in carbon

content has been observed for black locust and beech wood

by elemental analysis during heat treatment [13, 14]. In

addition, FTIR has been applied to track the chemical

changes of wood before and after heat treatment. Those

studies revealed that heat treatment resulted in the forma-

tion of condensation products, low-molecular-weight phe-

nolic substances and oxidation products, as well as the

reduction of acetyl groups, fats, waxes, and resin acids

[15–17].
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In recent years, the thermo-vacuum modification of

wood has been developed as a new method to decrease the

effects of oxygen on the loss of mechanical properties

during heat treatment [18, 19]. It has been found that the

thermo-vacuum modification can also improve the dimen-

sional stability of wood [1, 20]. Up to date, several

observations have been reported on the physical and

mechanical properties of heat-treated wood in vacuum

[21–23]. However, no results have been reported on the

dynamic vapour sorption properties of thermo-vacuum

treated wood. Therefore, the aim of this study was to

investigate the effect of thermo-vacuum treatment on the

chemical changes and dynamic water vapour sorption

properties of Eucalyptus pellita wood to better understand

sorption behavior of thermo-vacuum treated wood.

Materials and methods

Wood samples and thermo-vacuum treatment

protocols

Eucalyptus pellita F. Muell. was obtained from China

Eucalypt Research Centre in Guangdong Province, China.

Eucalypt wood blocks of size 330 mm 9 40 mm

9 40 mm (L 9 T 9 R) were prepared from defect-free

wood and air-dried. The samples were oven-dried at

(103 ± 2) �C until a constant weight before thermo-vac-

uum treatment. Thermo-vacuum treatment was performed

at 160, 180, 200, 220, and 240 �C for 4 h under the neg-

ative pressure (-0.02 to -0.08 MPa), as described in Sun

et al. [1]. The untreated wood blocks were used as control

samples.

Wet chemical analysis of wood components

Wet chemical analyses of wood components have been

performed on untreated and heat-treated E. pellita wood.

Before chemical analysis, the wood samples were grinded,

sieved (0.425–0.250 mm), and air-dried. The moisture

content (MC) of the samples was determined by oven

drying at 105 �C to a constant weight and the ash content

was determined by ashing in a muffle furnace at

575 ± 25 �C for 6 h based on National Standard of the

People’s Republic of China [24, 25]. The contents of

Klason lignin, holocellulose, alpha-cellulose in holocellu-

lose, alcohol-benzene solubility, and 1% NaOH extractives

in E. pellita wood were determined according to National

Standard of the People’s Republic of China [26–30], which

were described by Sun et al. [31]. The amount of each

chemical component is reported as % based on ash-free dry

organic matter. Chemical analyses were performed in

duplicate.

Elemental analysis

The analyses in the carbon and hydrogen contents were

performed on a CHNOS Elemental Analyzer (vario EL III,

Elementar Analysensysteme GmbH, Germany). Before

analysis, the untreated and heat-treated E. pellita wood

were grinded (C0.075 mm) and oven-dried to a constant

weight.

FTIR analysis

FTIR spectra were collected with a spectrometer Spectrum

GX FTIR (Perkin-Elmer Inc., USA), equipped with a

deuterated triglycine sulfate (DTGS) detector. Each spec-

trum was recorded in the region of 4000–400 cm-1 by an

average of 32 scans at a resolution of 4 cm-1. The samples

were chopped into small sticks, grinded, and sieved

(0.150–0.124 mm). Then it was blended with KBr and

compressed at a pressure of 8.5 t cm-2 to prepare a tablet.

Three spectra were taken from each sample and the pre-

sented FTIR spectra were average value spectra.

Dynamic water vapour sorption analysis

The moisture sorption characteristics of the untreated and

heat-treated wood samples were determined on micro-

specimens of approximately 5 mg in the range of relative

humidity (RH) between 0 and 95% at 25 ± 0.1 �C using a

dynamic vapour sorption (DVS) apparatus (IGAsorp,

Hiden Isochema Ltd., UK). The weight changes of the

wood samples were determined by an electronic

microbalance with an accuracy of 0.1 lg. The instrument

maintained a constant target RH until the mass change in

the sample (dm/dt) was less than 0.002% per minute over a

600 s period. The mass change was related to the dry

weight of the sample.

Results and discussion

Wet chemical analysis of wood components

The changes in chemical composition of E. pellita wood

before and after heat treatment are presented in Table 1.

The chemical analyses revealed that during the thermo-

vacuum treatment, the proportion of lignin and extractives

increased, whereas the relative contents of holocellulose

and alpha-cellulose decreased. Similar results have been

reported by previous studies [8, 32–34].

The decrease in holocellulose contents can be mainly

due to the reduction of hemicelluloses (polyoses) contents

[35]. In general, hemicelluloses are less thermally

stable than other wood constituents owing to their low
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molecular weight, amorphous and branched structure.

According to previous studies [36, 37], the degradation of

hemicelluloses begins with deacetylation, followed by

depolymerization catalysed by the released acetic acid.

This leads to the reduction in polyoses contents. Cellulose

is more stable than hemicelluloses because of its crystalline

nature and is therefore affected less by heat treatment [38].

Lignin is considered as the most thermally stable con-

stituent in the three main chemical components of wood.

Previous results indicated that when the treatment tem-

perature was 600 �C, the mass losses of hemicelluloses

were over 95%, and those of cellulose were more than

80%, whereas the mass losses of lignin were under 60%

[39]. In this study, the relative content of lignin increased

as the treatment temperature rose. This does not mean that

there is an increase in the amount of lignin but the reduc-

tion in polysaccharides is higher. In addition, the conden-

sation reactions might also lead to an increase of the lignin

proportion [40, 41].

The content of alcohol-benzene extractives increased

gradually as the treatment temperature rose. This is prob-

ably caused by the degradation of polysaccharides during

heat treatment [42]. The content of 1% NaOH extractives

increased at low treatment temperature, reaching a maxi-

mum value at 160 �C. After that, the relative content of

extractives decreased. Similar results have been reported

for heat-treated pine and eucalypt wood [10, 41]. This trend

may be due to the appearance of new extractable com-

pounds resulting from polysaccharide degradation at

160 �C. As the treatment temperature increases further,

new compounds degrade to volatiles that leave the wood,

resulting in a decrease in the extractives content.

Elemental analysis

Chemical structure modifications can result in the ele-

mental changes of the molecules. The relative contents

of carbon and hydrogen before and after thermo-vac-

uum treatment are shown in Fig. 1. As shown in Fig. 1,

there was a decrease in the content of hydrogen,

whereas the carbon content had an increasing trend as

the treatment temperature rose. Therefore, the ratios of

H/C decreased with the increase of treatment tempera-

ture, which might be due to the elimination of water

caused by dehydration of the carbohydrates [43, 44].

During heat treatment, carbonic acids are formed as a

result of cleavage of the acetyl groups in polyoses. In

the meantime, polyoses are hydrolyzed into oligomeric

and monomeric structures. Subsequently, the monomeric

structures are dehydrated to aldehydes [36, 37]. Such

reactions could also contribute to a further decrease of

hydrogen content.

FTIR analysis

The FTIR spectra of untreated and heat-treated E. pellita

wood are shown in Figs. 2 and 3. The bands in the

3800–2750 cm-1 region are assigned to the hydroxyl and

methyl/methylene stretching vibrations. As shown in

Fig. 2, a broad band with a maximum at 3420 cm-1 was

observed. This band shifted to lower wavenumbers with the

increase of treatment temperature. According to previous

studies [45, 46], the broadening of the OH band is con-

sidered as a result of a mixture of intermolecular and

intramolecular hydrogen bonds.

Fig. 1 Carbon and hydrogen contents of untreated and heat-treated

eucalypt wood

Table 1 Chemical analysis of

the wood components of

untreated and heat-treated

eucalypt wood

Composition Untreated Heat treat temperature (�C)

160 180 200 220 240

Klason lignin* (%) 30.88 32.29 32.39 32.53 33.45 35.30

Holocelllulose* (%) 74.25 68.17 65.68 62.17 56.17 47.06

Alpha-cellulose in holocellulose* (%) 45.42 41.83 40.76 39.02 33.97 23.11

Alcohol-benzene solubility* (%) 1.59 1.93 1.98 2.08 2.79 3.94

1% NaOH solubility* (%) 13.14 18.02 17.72 17.30 16.68 15.76

* Thermo-vacuum treatment was performed for 4 h under the negative pressure (-0.02 to -0.08 MPa)
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The ‘‘fingerprint’’ region 2000–600 cm-1 is mainly

analyzed because it reflects the changes in the functional

groups of wood components after thermo-vacuum treat-

ment. As can be observed from Fig. 3, there was a decrease

in the intensity of the absorbance at 1738 cm-1, assigned

to C=O vibration of the non-conjugated acetyl or carbonyl

groups in xylan [47]. This indicated that a part of acetyl

groups in the wood were deacetylated during thermo-vac-

uum treatment. The intensity of the band at 1596 cm-1,

assigned to the aromatic skeletal vibrations plus C=O

stretch of lignin [48, 49], showed a decrease after thermo-

vacuum treatment, indicating that the treatment resulted in

a loss of the C=O group linked to the aromatic skeleton in

lignin. This change might be due to the occurrence of a

cross-linking reaction in the lignin by heat treatment [50].

The slight increase of the intensity in the band at

1508 cm-1, assigned to the stretching vibrations of the

C=C bonds of aromatic skeletal in lignin, suggested that

the amorphous carbohydrates (especially hemicelluloses)

degraded and that the relative amount of lignin in the

samples increased as treatment temperature rose. A gradual

shift in this band was observed from 1508 to 1512 cm-1

with the increase of treatment temperature, suggesting the

splitting of aliphatic side chains and cleavage of b–O–4

linkages in the lignin structure, followed by condensation

reactions [51, 52]. The intensity of the peak at 1373 cm-1,

assigned to the C–H bending vibrations in cellulose and

hemicelluloses [50, 53], varied slightly after treatment.

Similar results have been reported for bamboo and Gympie

messmate wood [35, 54]. The decrease in the intensity of

the band at 1230 cm-1, assigned to C–O stretching vibra-

tions in lignin and acetyl and carboxylic vibrations in

xylan, indicated that the formation of condensed structures

in lignin and the occurrence of deacetylation in hemicel-

luloses [53]. The increase in the intensity of the band at

1058 cm-1, assigned to C–O stretching vibrations in cel-

lulose and hemicelluloses [42, 53], suggested the formation

of aliphatic alcohols during thermo-vacuum treatment. The

intensity of the band at 895 cm-1, assigned to b-glycosidic

stretching of the sugars [35, 54], decreased after heat

treatment. This can be due to the results of thermal

degradation of hemicelluloses [35].

Dynamic water vapour sorption analysis

Wood as a hygroscopic material contains a certain per-

centage of water and is sensitive to the changes of envi-

ronmental moisture (adsorbing water as the relative

humidity increased and desorbing water as the relative

humidity decreased) [55]. The moisture sorption iso-

therms curves of the untreated and heat treated samples

are shown in Fig. 4. In this study, the characteristic sig-

moidal shape sorption curves for cellulose-based materi-

als can be observed in the untreated and heat-treated

samples. As shown in Fig. 4, the equilibrium moisture

content (EMC) in the untreated and heat-treated samples

increased with the increasing RH. There was a reduction

in the equilibrium moisture content recorded during the

adsorption and desorption process resulting from the

thermo-vacuum modification of wood. The equilibrium

moisture content decreased as the temperature of treat-

ment rose. It is well known, hygroscopicity is highly

related to the accessible hydroxyl groups of wood

[49, 56]. The reduction in hygroscopicity after thermo-

vacuum treatment is probably due to the reduction of the

hydrophilic groups. As indicated by the FTIR spectra in

this study, the degradation of the carbonyl groups in xylan

Fig. 2 FTIR spectra of untreated and heat-treated eucalypt wood

(4000–600 cm-1)

Fig. 3 FTIR spectra of untreated and heat-treated eucalypt wood

(2000–600 cm-1)
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and the loss of the C=O group linked to the aromatic

skeleton in lignin could contribute to the decrease of

wood hygroscopicity. According to previous studies, the

number of accessible hydroxyl groups of wood was

quantified by the hydrogen–deuterium exchange and 2H

NMR spectroscopy before and after heat treatment [57].

The results showed that there was a steady decrease in

accessible hydroxyl groups as the temperature of heat

treatment increased and it coincided with the decrease in

hygroscopicity after heat treatment. Furthermore, after

heat treatment, there may be an increase in the relative

cellulose crystalline content due to the ultrastructural

reorganization of cellulose from the paracrystalline (less

ordered) state to the crystalline one, which effectuated a

further reduction in the available sorption sites [58]. This

also resulted in the decrease in hygroscopicity of wood.

Due to its aromatic structure, lignin is more hydrophobic

than the holocellulose fraction. Thus, the increase in the

relative content of lignin may result in the decrease of

wood hygroscopicity. In addition, it has been shown that

the cross-linking of lignin took place during thermo-

vacuum treatment. The cross-linking of lignin resulted in

a restraining effect on cell-wall expansion, which is

responsible for binding water molecules during sorption

[58, 59].

The hysteresis is usually defined as the differences of the

equilibrium moisture content values between desorption

and adsorption processes at the same relative humidity. The

hysteresis of the untreated and heat-treated E. pellita wood

is shown in Fig. 5. As shown in Fig. 5, in general, the

hysteresis had a decreasing trend with the increasing

treatment temperature. Similar results have been reported

by the previous studies [50]. However, contradictory

results have been obtained on the effects of heat treatment

on sorption hysteresis. On the one hand, previous studies

indicated that heat treatment had no effect on the sorption

hysteresis of wood [60]. On the other hand, other

Fig. 4 Moisture sorption isotherms of untreated and heat-treated eucalypt wood

Fig. 5 Sorption hysteresis of untreated and heat-treated eucalypt

wood
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researchers observed that the sorption hysteresis for poplar

and beech wood increased as treatment temperature rose

during heat treatment [61]. The differences in the changes

of sorption hysteresis of heat-treated wood might be due to

several factors such as the process parameters of treatment,

the state of specimens and the treatment methods. So far,

the effects of heat treatment on sorption hysteresis are still

unclear. Therefore, further studies are needed to investigate

the mechanism of changes in sorption hysteresis of heat-

treated wood.

Conclusions

Thermo-vacuum treatment led to clear changes in the

chemical properties of E. pellita wood. Holocellulose and

alpha-cellulose contents decreased, whereas lignin and

extractives contents increased with increasing treatment

temperature. The decrease in the content of hydrogen and the

increase in the content of carbon indicated the loss of func-

tional groups containing hydrogen during heat treatment.

The equilibrium moisture content and sorption hysteresis of

wood decreased after heat treatment. FTIR indicated a

degradation of the carbonyl groups in xylan and a loss of the

C=O group linked to the aromatic skeleton in lignin. These

chemical changes resulted in a decrease of the accessible

moisture sorbing sites in the wood and explained the

reduction of hygroscopicity in heat-treated wood.
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(2013) Comparison of mechanical properties of heat treated

beech wood cured under nitrogen or vacuum. Polym Degrad Stab

98:1762–1765

19. Wang Z, Sun B, Liu J (2016) Effect of thermo-vacuum treatment

on the color and chemistry of larch wood. BioResources

11:2349–2360

20. Wang XH, Fei BH, Liu JL (2014) Effect of vacuum heat treat-

ment temperature on physical and mechanical properties of Eu-

calyptus pellita wood. Wood Fiber Sci 46:1–8

21. Allegretti O, Brunetti M, Cuccui I, Ferrari S, Nocetti M, Terziev

N (2012) Thermo-vacuum modification of spruce (Picea abies

Karst.) and fir (Abies alba Mill.) wood. BioResources

7:3656–3669

22. Ferrari S, Allegretti O, Cuccui I, Moretti N, Marra M, Todaro L

(2013) A revaluation of turkey oak wood (Quercus cerris L.)

through combined steaming and thermo-vacuum treatments.

BioResources 8:5051–5066
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