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E0.05	� Fifth-percentile value of modulus of elasticity
Es	� Mean value of modulus of elasticity of shaft
E
0.05

, Es
0.05

	� Fifth-percentile value of modulus of elasticity 
of shaft

Ep	� Mean value of modulus of elasticity of gussets
E
p

0.05
	� Fifth-percentile value of modulus of elasticity 

of gussets
fc,0,k	� Characteristic compressive strength along the 

grain
fc,0,d	� Design compressive strength along the grain
fv,k	� Characteristic panel shear strength
fr,k	� Characteristic planar (rolling) shear strength
fm,k	� Characteristic bending strength
G	� Shear modulus
Gmean	� Mean value of shear modulus, mean modulus 

of rigidity
Gp	� Mean value of shear modulus for gussets
G

p

0.05
	� Fifth-percentile value of shear modulus for 

gussets
i	� Radius of gyration of a column treated as 

solid
i1	� Radius of gyration of a column shaft
I	� Second moment of area of a section
Ip	� Second moment of area of gussets
Is	� Second moment of area of a column shaft
kc	� Instability factor
lc	� Length of a column treated as solid
l1	� Axial span of gussets
M(x)	� Bending moment
Mmax	� Maximum bending moment
n	� Number of column shafts n = 2
n	� Load-bearing capacity of a column
P	� Compressive force
q(x)	� Transverse load

Abstract  The paper focuses on timber constructions. 
It analyses two-shaft columns spaced by gussets made of 
timber, plywood, particleboard or fibreboard. Based on the 
theory authored by Timoshenko and Gere, some formulae, 
defining the column critical force, its slenderness ratio, the 
shear force applied to the column and the maximum shear 
force that a column can carry, were derived. Next, based 
on the derived formulae and those applied in the literature 
(Standard EN-1995 Eurocode 5), a comparative analysis 
was conducted on the load-bearing capacity and gusset cal-
culation for the columns. The calculations demonstrate that 
there are substantial discrepancies between the static values 
being compared and both calculation methods lead to par-
tially divergent results.

Keywords  Two-shaft columns · Gussets · Shear strain · 
Critical load-bearing capacity · Shearing in columns

Symbols

Latin letters
a	� Initial maximum curvature of a column
a1	� Axial distance of shafts
A	� Cross section, cross section of column
Ap	� Cross section of gusset
e	� Eccentric of force P application
E	� Modulus of elasticity, modulus of elasticity of 

timber
Emean	� Mean value of modulus of elasticity
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Va
p
	� Maximum shear force, caused by compressive 

force P, for a column with its initial curvature 
described with a sinusoid

Ve
p
	� Maximum shear force, caused by compressive 

force P, for a column, where force P acts on 
eccentric e

Va
p,max

	� Maximum shear force a column can carry, for 
a column with its initial curvature described 
with a sinusoid

Ve
p,max

	� Maximum shear force a column can carry, for 
a column, where force P acts on eccentric e

y(x)	� Deflection line function
zmax	� Distance between the neutral axis and the 

extreme grain

Greek letters
ηef	� Connection factor for which values are given 

in Table C.1 (EN-1995 Eurocode 5 [4])
λ	� Slenderness ratio of a column treated as solid
λ1	� Slenderness ratio of a single column shaft, 

where some buckling occurs between the 
gussets

µ	� Energetic shear coefficient, for a column 
treated as solid

Introduction

Beside solid columns, two-shaft columns spaced by gussets 
are a commonly applied structural element. Generally, in tim-
ber constructions, solid wood or glued laminated timber are 
used for the shafts, while the gussets are made of wood, ply-
wood, particleboard or fibreboard. Timber structures, basing 
on EN 338 [1], feature a relatively high ratio of modulus of 
elasticity E to shear modulus G, which, for timber class e.g. 
C18, amounts to E

G
= 16. Thus, in order to identify critical 

load, it becomes necessary to take shear strain into consid-
eration. In steel structures, for instance, basing on EN-1993 
Eurocode 3 [2], the ratio of modulus of elasticity E to shear 
modulus G is much lower and amounts to E

G
= 2.5, which 

means that, while conducting static analysis for elements pro-
duced from that material, the influence of shear strain on load-
bearing capacity is relatively marginal and, in many cases, 
neglectable. The current state of the art, given in Timoshenko 
and Gere [3], indicates that critical load-bearing capacity of 
columns with gussets in question is always lower than the 
critical load-bearing capacity of solid columns with the same 
cross section and the same slenderness ratio. This results 
from the fact that the effect of shear on displacement within a 
column with gussets is much stronger than in a solid column. 
The author does research on structure stability and he stud-
ied the theory given in Timoshenko and Gere [3] dealing with 
two-shaft columns with gussets taking into consideration the 

influence of shearing on critical load-bearing capacity. The 
author found then that the formulae used to date and given 
in the literature (EN-1995 Eurocode 5 [4]) are too simple to 
describe, in an accurate way, the static work of the column as 
a composite structure made not only of columns with wooden 
gussets but also of different materials of different strength 
and elasticity. Therefore, a comparative static analysis of the 
columns with gussets was performed based on formulae pro-
vided for by the subject literature (EN-1995 Eurocode 5 [4]), 
not including a factor that reflects the impact of shear on criti-
cal load-bearing capacity of the columns, and some formulae 
based on the theory presented in Timoshenko and Gere [3] 
that take shear effect into consideration.

Calculations for two‑shaft columns with gussets, 
according to the subject literature (EN‑1995 
Eurocode 5 [4]): state of the art

Slenderness ratio of a two-shaft column with gussets fixed 
rigidly to the shaft, based on the applicable literature (EN-
1995 Eurocode 5 [4]), is hereby derived from the formula:

According to the literature (EN-1995 Eurocode 5 [4]), 
shear forces in columns Vp and maximum shear forces 
Vp,max the column is able to carry, can be derived from 
these formulae:

In order to determine maximum shear force Vp,max the 
column is able to carry, the value of maximum force P, at 
which load-bearing capacity of the column is not exceeded, 
needs to be brought into formulae (2).

Derivation of formulae for load‑bearing 
column capacity, based on the theory presented 
in Timoshenko and Gere [3], accounting 
for the influence of shearing

Determination of critical force

In order to determine critical force, taking shear into account, 
a rod deflection differential equation, as derived by the 
author, was used. That equation accounts for the influence of 
shear forces on deflections, and it has the following form:

(1)�ef =

√
�2 + �ef ⋅

n

2
�2
1

(2)Vp =

⎧
⎪⎪⎨⎪⎪⎩

P
120 ⋅ kc

for 𝜆ef < 30

P ⋅ 𝜆ef
3600 ⋅ kc

for 30 ≤ 𝜆ef < 60

P
60 ⋅ kc

for 60 ≤ 𝜆ef
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where k2 equals:

Derivation of Eq.  (3) is presented in the author’s article 
Śliwka  [5].

In that paper, a case of a rod loaded with longitudinal 
compressive force P was analyzed, which results in the fact 
that the bending moment M(x), present in the equation, and 
transverse load q(x) take up the 0 value M(x) = 0 q(x) = 0. 
That yielded the following equation:

The equation was solved, using the method of operational 
calculus, based on Laplace transformation Osiowski [6]. The 
solution of the equation is the following function:

Critical force was derived from a boundary condition, say-
ing that the value of the argument of function sin at point x = l 
k·l equals:

Replacing k in the equation, where k2 = P

EI

(
1 −

�P

GA

) 

and n = 1, the following formula for critical force P = Pc,crit,  
was obtained:

(3)

d2y(x)

dx2
+ k2y(x) = −

1

EI
(
1 −

�P
GA

)M(x) −
�

GA
(
1 −

�P
GA

)q(x)

(4)
k
2 =

P

EI

(
1 −

�P
GA

)

(5)
d2(x)

dx2
+ k2y(x) = 0

(6)y(x) = w0 cos kx + w1

1

k
sin kx

(7)k ⋅ l = n�

where:

Formulae (8) and (9) are presented in the author’s article 
Śliwka [5].

Determination of slenderness λef for a two‑shaft column 
spaced by gussets, based on the theory presented 
in Timoshenko and Gere [3]

In formula (8) it was assumed that factor η substitutes for 
�
GA

. Factor η is a value that shear force Vp needs to be mul-
tiplied by to get an additional line inclination angle, result-
ing from shear action. Hence, we get:

In order to obtain angular displacement caused by shear 
force Vp, the strain of an element of the column, located 
between cross sections α–α and β–β, as in Fig. 1a, was con-
sidered. Assuming that deflection curves of the column shafts 
have their inflection points in those sections, the bending 
forms of the element concerned that are shown in Fig. 1b, c 
were derived. Cumulative angular displacement γ which is 
the result of the action of force Vp, consists of angular dis-
placement caused by bending of the shaft and angular dis-
placement resulting from bending and shearing of the gussets.

(8)P
c,crit =

P
e

1 + P
e

�
GA

(9)Pe =
�2EI

l2
c

(10)� = � ⋅ Vp

Fig. 1   Spaced column. a Static diagram of the column. b Deformed element of the column due to bending of its shaft. c Deformed element of 
the column due to bending and shearing of its gusset
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Determination of angular displacement arising 
from shaft bending (Fig. 1b)

In order to determine angular displacement arising from 
shaft bending, horizontal displacements u, as per Fig.  1b, 
were determined.

Then, angular displacement was drawn which equals 
u

0.5 ⋅ l
1

.

The calculations performed are based on the Max-
well–Mohr formula.

Determination of angular displacement arising 
from bending of gussets (Fig. 1c)

Angular displacement �, resulting from gusset bending, as 
in Fig. 1c amounts to:

The calculations performed are based on the Max-
well–Mohr formula.

Determination of angular displacement arising 
from shearing of the gussets (Fig. 1c)

Angular displacement arising from shearing of the gussets 
is �
2GA

T .

Therefore, the total angular displacement γ is equal:

Having replaced u =

Vp ⋅ l
3

1

48EsIs
, � =

Vp ⋅ l1 ⋅ a1
24EpIp

 and 

T =

Vp ⋅ l1
a
1

 in that Eq. (13), the following was obtained:

Buckling of the column shaft, between two neighboring 
gussets was taken into account by multiplying the first fac-
tor in Eq. (14) by the expression:

(11)u =

l1

2

∫

0

Vp

2
⋅ x ⋅ 1 ⋅ x

EsIs
dx =

Vp ⋅ l
3

1

48EsIs

(12)� =

a
1

∫

0

(
Vp

2
⋅ l

1
−

Vpl1
a
1

⋅ x

)(
1 −

x
a
1

)

2EpIp
dx =

Vp ⋅ l1 ⋅ a1

24EpIp

(13)� =
u

0.5 ⋅ l1
+ � +

�

2GA
T

(14)
� =

Vp ⋅ l
2

1

24EsIs
� +

Vp ⋅ l1 ⋅ a1

24EpIp
+

� ⋅ Vp ⋅ l1

2GpAp ⋅ a1

where P
e,1

=

�2E
s
I
s

l
2

1

 is the critical force active in buckling 

of a column shaft between its gussets. Using equations (10) 
and (14), the value of η shall be:

By replacing expression (16) in formula (8) instead of 
�

GA
 

and substituting mean moduli Es, Ep, Gp with fifth percentiles 
Es
0.05

, Ep

0.05
, Gp

0.05
, the following formula for critical force was 

derived Pc,crit

where P
e
=

�2E
0.05

I

l2
c

 is the critical force for a column 

treated as a solid one. Due to the fact that in the denomina-
tor of formula (17) there is coefficient � derived from for-
mula (15), dependent on critical force Pc,crit that is sought 
for, Timoshenko and Gere [3] approach the problem of 
determining force Pc,crit based on formula (17) as a non-lin-
ear one. As in such circumstances it is impossible to derive 
Pc,crit directly from the formula, Timoshenko and Gere [3] 
state that Eq. (17) can be solved only by the trial method. 
As the trial method is complicated and consists merely of 
numeric calculations, the author solved the problem by cre-
ating a formula, from which critical force Pc,crit can be 
derived directly and in a precise manner. Performing a 
number of transformations, the author brought the formula 
(17) down to the form of a quadratic trinomial, where the 
requested variable is critical force Pc,crit itself. This way the 
following equation was derived:

Then, the author solved Eq. (18), deriving Pc,crit function 
from it:

(15)

� =
1

1 −
Pc,crit

2Pe,1

(16)� =
l2
1

24EsIs
� +

l1 ⋅ a1

24EpIp
+

� ⋅ l1

2GpAp ⋅ a1

(17)

Pc,crit =
Pe

1 + Pe

(
l2
1

24Es
0.05

Is
� +

l1 ⋅ a1
24E

p

0.05
Ip

+

� ⋅ l1
2G

p

0.05
Ap ⋅ a1

)

(18)

[
�2�2

1

�2E0.05A
+ �2

1

(
� − �1

)]
P2

c,crit

−
[
�2 + �2E0.05A ⋅ � + �2

1

]
Pc,crit + �2E0.05A = 0

(19)P
c,crit =

[
�2 + �2E0.05 ⋅ A ⋅ � + �2

1

]
−

√
[
�2 + �2E0.05 ⋅ A ⋅ � + �2

1

]2
− 4

[
�2 ⋅ �2

1

�2
E0.05 ⋅ A

+ �2
1

(
� − �1

)]
�2E0.05 ⋅ A

2

[
�2 ⋅ �2

1

�2
E0.05 ⋅ A

+ �2
1

(
� − �1

)]
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Therefore, basing on formula (17), the buckling length of a 
spaced column is the following:

Hence, the author suggests application of the following 
formula for column slenderness ratio λef. The formula was 
derived on the basis of dependencies (19), (20), and it has 
the form:

based on dependence (15) � =
1

1 −
P
c,crit

2P
e,1

, where 

P
e,1

=

�2
E
s

0.05
I
s

l
2

1

 and formula (19), coefficient ψ is expressed 

with the formula:

Calculation of gussets based on the theory 
presented in Timoshenko and Gere [3]

When designing the columns discussed herein, correct 
design of gussets is of critical meaning. To calculate gus-
sets we need to rely on the fact that the theoretical model in 
question has some geometrical imperfections, such as initial 
curvature or load eccentricity. In order to determine shear 

(20)

lef =

√√√√
1 + Pe

(
l2
1

24Es
0.05

Is
� +

l1a1

24E
p

0.05
Ip

+
�l1

2G
p

0.05
Apa1

)
⋅ lc

(21)�ef =

√
�2 + �2E0.05 ⋅ A

(
�1 ⋅ � + �2 + �3

)

(22)� =
2�2 + 2�2E0.05 ⋅ A

(
� − �1

)

�2 + �2E0.05A
(
� − 2�1

)
− �2

1
+

√[
�2 + �2E0.05A ⋅ � + �2

1

]2
− 4

[
�2 + �2E0.05A

(
� − �1

)]
�2
1

(23)�1 =
l2
1

24Es
0.05

Is

(24)�2 =
l1 ⋅ a1

24E
p

0.05
Ip

(25)�3 =
� ⋅ l1

2G
p

0.05
Apa1

(26)� = �1 + �2 + �3

(27)� =
lc

i

(28)�1 =
l1

i1

forces, the differential equation of a deformed axis of a col-
umn is used where its initial curvature is described with a 
sinusoid and forces P act upon eccentric e. The author ana-
lyzed two least favorable - according to Timoshenko and 
Gere [3] - static schemes of the column, as shown in Fig. 2. 
Figure 2a shows a buckled shape of a column at its initial 
curvature described with a sinusoid. Figure  2b presents a 
buckled shape of a column at its load acting on eccentrics 
e, where the eccentrics are of contradictory orientation.

Case 1: determination of shear forces Vp  
and Vp,max based on the analysis of a column at its 
initial curvature described with a sinusoid

Determination of maximum shear force Vp caused 
by longitudinal compressive force P

Upon determining shear forces Vp, the differential equation of 
a deformed axis of a column:

where k2 = P

EI
 as well as the formula for normal compres-

sive stress in a column eccentrically compressed were used.

The differential equation of a deformed axis of a column 
at its initial curvature described with a sinusoid, based on 
Eq. (29), has the following form:

This equation was solved with the operational calculus, 
based on the Laplace transformation Osiowski [6], and the 
solution for that is the following function:

Having taken the boundary conditions into consideration 
and added initial curvature yp(x) = a sin

�
l
x, the following 

equation was derived:

(29)
d2y(x)

dx2
+ k2y(x) = −

M(x)

EI

(30)�c,0,k =
P

A
+

Mmax ⋅ zmax

I
≤ fc,0,k

(31)
d2y□(x)

dx2
+ k2y□(x) = −k2a ⋅ sin

�

l
x

(32)

y□(x) = w0 cos kx + w1

1

k
sin kx +

k2 ⋅ l2

�2 − k2 ⋅ l2
a sin

�

l
x

−
k2 ⋅ l2

�2 − k2 ⋅ l2
a sin kx

(33)y(x) =
a

1 − �
sin

�

l
x
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� =
P

P
e

, where Pe is identified by the formula P
e
=

�2
EI

l
2

c

. In 

order to determine shear force, depending on compressive 
force P, angular displacement of a column on a support was 
determined:

hence, for the column length of l = lef, shear force Vp is:

and when transformed, it is:

Determination of maximum shear force Vp,max 
the column can carry

In order to determine shear force Vp,max the given column 
can carry, we divide formula (35) on both sides by col-
umn cross section A. Using �mid =

P

A
, to identify mean 

(34)� =

[
dy(x)

dx

]

x=0

=
� ⋅ a

l(1 − �)

(35)Vp = P
� ⋅ a

lef (1 − �)

(36)Vp = P
a

i

�3E0.05A

�2E0.05A�ef − P�3
ef

compressive stress, at which yields an extreme grain of the 
column cross section begins to develop, we find that the 
value of the highest shear force acting on a unit of the cross 
section, at which the yield begins, is:

Equation (37) can be transformed, using the formula 
(30). Assuming therein �mid =

P

A
 and Mmax = P ⋅ ymax, 

where ymax, based on Eq. (33), is ymax =
a

1 − �
, we receive:

where c = i
2

zmax

.

This dependence identifies maximum compressive 
stress, occurring in extreme grain, equal to the character-
istic compressive strength of wood caused by longitudi-
nal compressive force P, acting on eccentric ymax result-
ing from Eq.  (33). Deriving value of a from Eq.  (38) and 
replacing it in Eq. (37), we get:

Stress σmid was derived in the following way. Equa-
tion (38) was used. Dividing both numerator and denomi-
nator of expression α by cross section A, after some trans-
formations, � =

�mid

�
c,crit

 was obtained, where �mid =
P

A
 

�
c,crit =

�2
E0.05

�2
 � =

l
c

i
. Having solved Eq.  (38) towards 

σmid, the following quadratic equation appeared:

This equation has two real roots σmid (1) and σmid (2):

Taking into account the smaller root σmid = σmid(1) and 
putting it in Eq. (39), after some transformation, the follow-
ing equation was derived:

(37)
Vp,max

A
= �mid

�a

lef (1 − �)

(38)�max = �mid

[
1 +

a

c

1

1 − �

]
= fc,0,k

(39)

Vp,max

A
=

� ⋅ c

lef

[
fc,0,k − �mid

]

(40)�2

mid
−

[
fc,0,k +

(
1 +

a

c

)
�c,crit

]
�mid + fc,0,k ⋅ �c,crit = 0

(41)

�mid(1)(2) =
1

2

[
f
c,0,k +

(
1 +

a

c

)
�
c,crit

∓

√[
f
c,0,k +

(
1 +

a

c

)
�
c,crit

]2
− 4f

c,0,k�c,crit

]

(42)

Vp,max

A
=

�c

2lef

�
fc,0,k −

�
1 +

a

c

��2E0.05

�2
ef

+

�����
�
fc,0,k +

�
1 +

a

c

��2E0.05

�2
ef

�2

− 4fc,0,k
�2E0.05

�2
ef

⎤⎥⎥⎥⎦

Fig. 2   Buckled forms of the column. a Buckled column, with its 
initial curvature described with a sinusoid. b Buckled column, with 
forces P acting on eccentric e



242	 J Wood Sci (2017) 63:236–247

1 3

Case 2: determination of shear forces Vp 
and Vp,max, based on the analysis of a column 
at forces P acting on eccentric e

Determination of maximum shear force Vp, caused 
by longitudinal compressive force P

Based on Eq. (29), a differential equation of a deformed axis of 
a column at compressive force P, acting on support B, was for-
mulated as per Fig. 2b. The equation has the following form:

where k2 = P

EI
.

This equation was solved with the operational calculus, 
based on the Laplace transformation Osiowski [6], and the 
solution for that is the following function:

Having taken the boundary conditions into consideration 
this function was formulated:

Next, the column central cross section angular displace-
ment Θ was determined, treating each half of the column as a 
compressed rod of length l

2
, simply supported and loaded with 

bending moment P·e as shown in Fig. 2b. By differentiating 
Eq. (45) and replacing l with l

2
, the following was obtained:

Depending on compressive force P at l = lef is:

and after some transformations:

Determination of maximum shear force Vp,max 
the column can carry

In order to determine maximum shear force Vp,max for a 
given column, we divide formula (47) on both sides by cross 

(43)
d2y(x)

dx2
+ k2y(x) = −

1

EI

P ⋅ e

l
x

(44)y(x) = w0 cos kx + w1

1

k
sin kx −

e

l
x +

e

l ⋅ k
sin kx

(45)y(x) = e
(
sin kx

sin kl
−

x

l

)

(46)� =

�
dy(x)

dx

�

x=0

=
e

l

⎡
⎢⎢⎢⎣

kl

sin
kl

2

− 2

⎤⎥⎥⎥⎦

(47)

Vp =
2P ⋅ e

lef
+ P ⋅ � =

2P ⋅ e

lef
+

P ⋅ e

lef

⎛
⎜⎜⎜⎝

klef

sin
klef

2

− 2

⎞⎟⎟⎟⎠
= P ⋅ e

k

sin
klef

2

(48)Vp = P
e

i

(
P

E0.05A

)0.5

sin

[
�ef

2

(
P

E0.05A

)0.5
]

section A. Using �mid =
P

A
 to identify mean compressive 

stress, at which yields an extreme grain of the column cross 
section begins to develop, we find that the value of the high-
est shear force acting on a unit of the cross section, at which 
the yield begins, is:

value σmid was established in the following way. Based on 
Eq. (29) a differential equation of a deformed axis of a col-
umn at compressive force P, acting on support A, was for-
mulated as per Fig. 2b. The equation has the following form

where k2 = P

EI
.

This equation was solved with the operational calculus, 
based on the Laplace transformation Osiowski [6], and the 
solution for that is the following function:

Having taken the boundary conditions into considera-
tion, this function appears as the solution:

based on equations (45) and (52), total buckling from both 
forces P acting on eccentrics e is as follows:

after some transformations, y(x) equals:

Based on formula (54), maximum bending moment 
amounts to:

Having included the dependence (55) in formula (30) 
and assuming there that �mid =

P

A
 and k =

√
P

EI
, after 

some transformations, we obtain:

(49)
Vp,max

A
= �mid

e

i

(
�mid

E0.05

)0.5

sin

[
�ef

2

(
�mid

E0.05

)0.5
]

(50)
d2y(x)

dx2
+ k2y(x) =

1

EI

P ⋅ e

l
(l − x)

(51)
y(x) = w0 cos kx + w1

1

k
sin kx +

e

l
(l − x) −

e

l
cos kx

+
e

l ⋅ k
sin kx

(52)y(x) = −e

[
sin k(l − x)

sin kl
−

l − x

l

]

(53)y(x) = e
[
sin kx

sin kl
−

x

l

]
− e

[
sin k(l − x)

sin kl
−

l − x

l

]

(54)y(x) = e

sin k
(
x −

l
2

)

sin
kl
2

+ e
(
1 − 2

x

l

)

(55)Mmax = −EI

[
d2y(x)

dx2

]

x=
(

�

2⋅k
+

l

2

) = P ⋅ e ⋅ cosec
kl

2

(56)�mid

{
1 +

e

c
cosec

[
�ef

2

(
�mid

E0.05

)0.5
]}

= fc,0,k
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In conclusion, the formulae, from which we derive 
maximum shear forces Vp acting in the columns discussed 
herein, have the following form:

The formulae, from which we derive maximum shear 
forces Vp,max the given column can carry, have the follow-
ing form:

mean stress σmid is derived from this equation:

Determination of initial maximum curvature 
of column a, and of force application eccentric e

In accordance with the literature (EN-1995 Eurocode 5 [4]), 
upon determining instability factor kc, based on column buck-
ling line at its initial curvature described with a sinusoid, 

expression a
c
 was substituted with �

(
�
ef

�

√
f
c,0,k

E
0.05

− 0.3

)
, 

where coefficient β was β = 0.2 for solid timber and β = 0.1 for 
glued laminated timber. Therefore, the author suggests using 
the following formulae, concerning a and e.

m

(57)

(58)

m

(61)�mid

{
1 +

e

c
cosec

[
�ef

2

(
�mid

E0.05

)0.5
]}

− fc,0,k = 0

Comparative static analysis of load‑bearing 
capacity of columns

A comparative static analysis of columns was conducted in 
regards to their load-bearing capacity, using the formulae 
given in EN-1995 Eurocode 5 [4] and those based on the 
theory presented in Timoshenko and Gere [3]. The com-
parative analysis was based on a value λef described with 
the formulae (1) and (21). The formula (1) was used to 
determine critical load-bearing capacity of a column with-
out taking the influence of shearing into consideration. 
However, the formula (21) was used to determine critical 
load-bearing capacity taking the influence of shearing into 
consideration.

Table 1 shows strength, mean values of both moduli of 
elasticity and of shear of materials used for the analysis of 
the columns.

Fifth percentiles of moduli of elasticity and of shear 
were drawn from formulae E0.05 ≈

Emean

1.5
,G0.05 ≈

Gmean

1.5
. 

Load-bearing capacities were derived from the formula 
n =

P

A ⋅ k
c
⋅ f

c,0,d

. In the analysis, columns of three slender-

ness ratio values λef = 50, maximum slenderness ratio 
λef = 150 and intermediate slenderness ratio λef = 100 were 
discussed. The slenderness ratios λef = [50, 100, 150] refer 
to calculations based on the formulae given in EN-1995 
Eurocode 5 [4]. For the analysis, columns were a shaft size 
of 80·80 mm were adopted. The space between them was 
assumed at a = 60 mm. It was also assumed that the gussets 
in the columns were spaced axially at l1 = 600 mm. It was 
assumed that shafts of the columns would be solid timber 
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C18, and that their gussets would be produced, as variants, 
from timber, plywood, particleboard and fibreboard. It was 
assumed that the solid timber gussets would be made from 
timber class C18. It was assumed that the gussets were 
attached to the column shaft with glue. Aminoplastic resin, 
phenolic resin and polycondensation adhesive, described in 
the standard EN 301 [9], are among the possible materials 
that can be used for glueing. The height of the gussets was 
chosen appropriately to fulfil the load-bearing capacity 
condition for a glued joint, connecting the gusset with the 
column shaft, affected by torsional moment and shearing 
force. Then, the gusset thicknesses were chosen in such a 
way that they would be able to carry the shearing force and 
the bending moment created by it. Values of longitudinal 
compressive forces in the columns were chosen so that the 
load-bearing capacities of the columns, calculated with the 
formulae given in EN-1995 Eurocode 5 [4], accounting for 
the assumed dimensions of the column elements, were 
n = 1.0. Load-bearing capacity n = 1.0 means that stresses 
taking place in a stressed element are of equal value to per-
missible stress values for the given class of timber. Values 
n > 1 indicate by how much the load-bearing capacity has 
been exceeded. Values n < 1 indicate the existing reserve in 
the load-bearing capacity. In order to determine how much 
the load-bearing capacity has been exceeded and what 
reserve still exists in it, one has to calculate the value of 
(n − 1)⋅100%.

Tables 2, 3 and 4 present some static values determined 
based on the comparative analysis. These values include 

slenderness ratios λef, instability factors kc, load-bearing 
capacity n and percentage differences (n − 1)⋅100%. The 
values were determined on the basis of the formulae given 
in EN-1995 Eurocode 5 [4] and those based on the theory 
presented in Timoshenko and Gere [3].

Table 1   Static values used 
in the analysis of columns. 
Standards EN 338 [1], EN 
12369-2 [7], EN 12369-1 [8]

In Table 1:
fr,k – characteristic planar (rolling) shear strength
fv,k – characteristic panel shear strength
fm,k – characteristic bending strength
Emean – mean value of modulus of elasticity
Gmean – mean value of shear modulus, mean modulus of rigidity

fr,k (MPa) fv,k (MPa) fm,k (MPa) Emean (MPa) Gmean (MPa)

Timber C18 3.4 3.4 18 9000 560
Plywood 1.2 7.5 30 6000 550
Chipboard 1.8 6.6 14.2 3200 860
Fibre board 3.0 18 35 4800 2000

Table 2   Analysis of load-bearing capacity of columns

λef = 50

1 2 3 4 5

λef 50 52.07 72.75 60.63 67.50
kc 0.781 0.756 0.500 0.647 0.560
n 1.0 1.033 1.560 1.208 1.394
(n − 1)⋅100% 0% 3.3% 56% 20.8% 39.4%

Table 3   Analysis of load-bearing capacity of columns

λef = 100

1 2 3 4 5

λef 100 99.08 110.76 103.37 107.01
kc 0.290 0.295 0.240 0.273 0.256
n 1.0 0.984 1.207 1.062 1.132
(n − 1)⋅100% 0% −1.6% 20.7% 6.2% 13.2%

Table 4   Analysis of load-bearing capacity of columns

In Tables 2, 3 and 4:
–	 Item 1: calculations of columns, based on the formulae applied as 

per EN-1995 Eurocode 5 [4]
–	 Items 2, 3, 4, 5: calculations with the formulae based on the theory 

presented in Timoshenko and Gere [3], where:
	 2:	 Calculations of columns with timber gussets
	 3:	 Calculations of columns with plywood gussets
	 4:	 Calculations of columns with chipboard gussets
	 5:	 Calculations of columns with fibreboard gussets
	 λef – as per formulae (1) and (21)
	 kc – instability factor
	 n – load-bearing capacity of a column

λef = 150

1 2 3 4 5

λef 150 149.31 157.32 152.19 154.70
kc 0.135 0.137 0.124 0.132 0.128
n 1.0 0.988 1.092 1.024 1.057
(n − 1)⋅100% 0% −1.2% 9.2% 2.4% 5.7%
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Comparative static analysis for calculation 
of gussets

Within the framework of this study, a comparative static 
analysis of maximum shear forces Vp, caused by longitu-
dinal force P, and maximum shear forces Vp,max a column 
can carry, was conducted. The comparative analysis was 
based on the formulae (2) and (57), (58), (59) and (60). The 
formula (2) was used to determine shear forces in the col-
umn basing on the used to date theory given in literature 
(EN-1995 Eurocode 5 [4]) which does not take into con-
sideration the influence of shearing on critical load-bearing 
capacity. Formulas (57), (58), (59) and (60) were used to 
determine shear forces in the column basing on the theory 
given in Timoshenko and Gere [3], which takes into con-
sideration the influence of shearing on critical load-bearing 
capacity.

Elastic and strength values of the materials in use are 
presented in Table  1. In the analysis, columns with three 
slenderness ratios: λef = 50, λef = 100 and λef = 150 were 
taken into account; the shaft discussed herein, with slender-
ness ratio λef = 150, was assumed, where the calculations 
were performed for variants of columns built with timber, 
plywood, particleboard or fibreboard gussets. In all cases, 
one longitudinal compressive force P, causing maximum 
normal stress in the shaft discussed herein, with slender-
ness ratio λef = 150, was assumed, where the calculations 
were based on the formulae given in EN-1995 Eurocode 5 
[4]. Values of maximum initial curvature of a column a and 
force eccentric e were derived from formulae (62) and (63).

Results of the analysis are presented in Tables 5, 6 and 
7.

Experimental studies

The columns load-bearing capacity formulae, derived in 
the paper, can be verified experimentally by conducting 
comparative analysis for instability factors kc and load-
bearing capacity n. A description of non-destructive tests 
concerning instability factor kc is given in the author’s arti-
cle Śliwka [5], while the destructive tests for load-bearing 
capacity consist in the determination of forces destroying 
an element under study, and comparing them with forces 
established through theoretical analysis.

Summary and conclusions

1.	 The comparative static analysis of columns presented 
herein leads to the conclusion that the column cal-
culation method set forth in EN-1995 Eurocode 5 
[4] and the method based on the theory presented in 
Timoshenko and Gere [3] lead to partially divergent 
results.

2.	 The analysis concerning load-bearing capacity of the 
columns suggests that the smallest differences among 
the compared static values λef, kc, n, (n − 1)⋅100% are 
observed in columns with slenderness ratio λef = 150 
with timber gussets, while the biggest differences occur 

Table 5   Analysis of gussets

λef = 50

1 2 3 4 5

V
a

p 0.38
0.11 0.14 0.13 0.14

V
e

p
0.07 0.08 0.08 0.08

V
a

p,max 2.22
2.27 3.33 2.82 3.16

V
e

p,max
0.88 1.28 1.03 1.17

Table 6   Analysis of gussets

λef = 100

1 2 3 4 5

V
a

p 1.24
0.18 0.21 0.19 0.20

V
e

p
0.09 0.10 0.10 0.10

V
a

p,max 2.66
3.45 3.33 3.41 3.37

V
e

p,max
2.00 2.34 2.12 2.23

Table 7   Analysis of gussets

In Tables 5, 6 and 7:
–	 Item 1: calculations of columns, based on the formulae applied as 

per EN-1995 Eurocode 5 [4]
–	 Items 2, 3, 4, 5: calculations with the formulae based on the theory 

presented in Timoshenko and Gere [3], where:
	 2: Calculations of columns with timber gussets
	 3: Calculations of columns with plywood gussets
	 4: Calculations of columns with chipboard gussets
	 5: Calculations of columns with fiberboard gussets
	 V

a

p
 – �maximum shear force, caused by compressive force P, for a 

column with its initial curvature described with a sinusoid
	 V

e

p
 – �maximum shear force, caused by compressive force P, for a 

column, where force P acts on eccentric e
	 V

a

p,max
 – �maximum shear force a column can carry, for a column 

with its initial curvature described with a sinusoid
	 V

e

p,max
 – �maximum shear force a column can carry, for a column, 

where force P acts on eccentric e

λef = 150

1 2 3 4 5

V
a

p 2.66
0.38 0.47 0.41 0.44

V
e

p
0.12 0.12 0.12 0.12

V
a

p,max 2.66
2.81 2.70 2.77 2.74

V
e

p,max
3.11 3.18 3.14 3.16
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in columns with slenderness ratio λef = 50 with gussets 
made of wood-based materials, especially of plywood.
2.1	 For columns with slenderness ratio λef = 150 with 

timber gussets, slenderness ratio determined with 
the formulae based on the theory presented in 
Timoshenko and Gere [3] is 0.46% lower than 
slenderness ratio determined with calculations 
based on the formulae given in EN-1995 Euroc-
ode 5 [4]. Instability factor kc determined with 
the formulae based on the theory presented in 
Timoshenko and Gere [3] is 1.48% higher than 
instability factor determined with calculations 
based on the formulae given in EN-1995 Euroc-
ode 5 [4]. Load-bearing capacity determined 
with the formulae based on the theory presented 
in Timoshenko and Gere [3] is unutilized in 
1.25%, comparing to load-bearing capacity n = 1 
determined with the formulae given in EN-1995 
Eurocode 5 [4]. Tables 2, 3, 4.

2.2	 For columns with slenderness ratio λef = 50 with 
plywood gussets, slenderness ratio determined 
with the formulae based on the theory presented 
in Timoshenko and Gere [3] is 45.5% higher 
than slenderness ratio determined with calcula-
tions based on the formulae given in EN-1995 
Eurocode 5 [4]. Instability factor kc determined 
with the formulae based on the theory presented 
in Timoshenko and Gere [3] is 35.98% lower than 
instability factor determined with calculations 
based on the formulae given in EN-1995 Euroc-
ode 5 [4]. Load-bearing capacity determined 
with the formulae based on the theory presented 
in Timoshenko and Gere [3] is exceeded by 56% 
in comparison with load-bearing capacity n = 1, 
determined with calculations based on the formu-
lae given in EN-1995 Eurocode 5 [4]. Tables 2, 3, 
4.

3.	 As part of the comparative analysis concerning the 
calculation of the gussets, it was proven that shearing 
forces calculated with the formulae given in EN-1995 
Eurocode 5 [4] were much higher than the shear-
ing forces calculated with the formulae based on the 
theory presented in Timoshenko and Gere [3]. The 
smallest differences amongst the values of those forces 
are observed in the columns with slenderness ratios 
λef = 50 and plywood gussets, for a column with its 
initial curvature described with a sinusoid, while the 
biggest differences appeared in the columns with slen-
derness ratios λef = 150 with timber, plywood, particle-
board, fibreboard, for a column with forces P acting on 
an eccentric e. Tables 5, 6, 7.

4.	 Shear forces calculated with the formulae based on 
the theory presented in Timoshenko and Gere [3] are 
stronger in the case of a column with its initial curva-
ture described with a sinusoid than in the case, where 
forces P act on eccentric e.

5.	 Moreover, it was demonstrated that the highest shear-
ing forces Vp,max the column can bear, calculated 
with the formulae based on the theory presented in 
Timoshenko and Gere [3], differ from the maximum 
shearing forces calculated with the formulae given in 
EN-1995 Eurocode 5 [4]. The smallest differences are 
observed in columns with slenderness ratio λef = 150 
with plywood gussets, for a rod with its initial curva-
ture described with a sinusoid, while the biggest dif-
ferences were seen amongst columns with slenderness 
ratio λef = 50 with timber gussets, for a column with 
forces P acting on an eccentric e. The analysis shows 
that among the group of cases in question maximum 
shearing forces Vp,max that can be transferred onto a 
column, calculated basing on Timoshenko and Gere 
[3], are lower than those maximum forces determined 
with the formulae (2) presented in the literature (EN-
1995 Eurocode 5 [4]). Tables 5, 6, 7.

6.	 Summing up, in many considered cases, there exist 
fundamental differences between the compared static 
values. Assuming that the presented theory, given in 
Timoshenko and Gere [3], is a correct and accurate 
one, it can be stated that calculating the columns with 
the help of formulae used to date and given in the lit-
erature (EN-1995 Eurocode 5 [4]) can lead to design 
errors. Therefore, the author suggests applying the for-
mulae based on the theory given in Timoshenko and 
Gere [3] when calculating the columns. The formulae 
presented in the paper have a practical significance in 
analyses of timber constructions.

7.	 The article presents the more thorough theory in com-
parison with the theory used so far, thus, it can con-
stitute the author’s indisputable contribution to the 
development in the scope of the stability of timber con-
structions.

8.	 Shear forces in a column depend directly on the initial 
curvature of a column, described with sinusoid a and, 
alternatively, on force application eccentric e. There-
fore, the author suggests the formulation of functions 
a = f(λef), e = f(λef), which depend on slenderness ratio 
λef of the column in question, described with formulae 
(62) and (63).

9.	 A static analysis of lattice columns with N and V lat-
tice configuration is provided for in a separate paper by 
the author.
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