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Introduction

Sugi (Cryptomeria japonica) is an important afforestation 
tree species in Japan, mainly used as a structural compo-
nent of wooden structures. A reliable supply/use of this 
domestic wood is essential for the revitalization of forestry 
in Japan [1]. To increase the reliability of quality wood 
sugi products, it necessary to gain a precise understanding 
of wood formation in the cambial-region tissues, because 
wood formation affects the quality and quantity of the 
wood. We previously examined variation in wood proper-
ties [2–4], focusing on the role of phytohormones in xylem 
formation in sugi trees [5, 6]. We found that crown length 
and distance from the base of the crown affects the amounts 
of auxin (IAA) in cambial-region tissues [5] and that young 
sugi trees forming juvenile wood had very large amounts 
of IAA in these tissues compared to trees forming mature 
wood [6]. However, the role of endogenous phytohormones 
in cambial-region tissues on tracheid formation and differ-
entiation in sugi trees remains unclear.

In other afforestation coniferous tree species, studies 
have reported on aspects of the role of IAA in wood for-
mation. However, the precise role of IAA in wood forma-
tion in these species also remains unclear. Based on stud-
ies that applied exogenous IAA to Pinus sylvestris [7, 8] 
and Pinus resinosa [9], it was assumed that IAA is actively 
synthesized in elongating shoot apices, and transported to 
the stem cambium, where it then stimulates tracheid pro-
duction. In those studies, the amount of endogenous IAA in 
the cambial-region tissues varied seasonally, being higher 
in summer and lower in autumn and winter in Pinus con-
torta and Pinus densiflora [10, 11]. Based on the radial dis-
tribution pattern of IAA from the phloem to the developed 
xylem in P. sylvestris, IAA was assumed to control xylem 
differentiation as a “morphogen” [12]. On the other hand, 
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it was suggested that tracheid production was not directly 
related to endogenous IAA concentration in the cambium 
of pine trees [13]. IAA amounts did not change with late-
wood initiation in P. sylvestris [14]. Therefore, more accu-
rate and precise study of the role of endogenous IAA in 
afforestation coniferous tree species are needed.

The effects of gibberellins on xylem formation have also 
been reported. Increasing gibberellin (GA) levels in hybrid 
aspen through the overexpression of a key gene in the GA 
biosynthesis pathway induced increased rates of xylogen-
esis and elongated xylem fibers in comparison with wild-
type counterparts [15]. A study in which gibberellin A3 
(GA3) and inhibitors of the synthesis of gibberellin were 
applied found that gibberellin plays an important role in the 
tension wood formation of Acacia mangium seedlings [16]. 
The quantitative study showed that gibberellin A1 (GA1) 
and gibberellin A4 (GA4) were located in the zone of 
expansion in the xylem cells of aspen [17]. In angiosperm 
trees, gibberellins might play an important role in xylem 
cell differentiation. However, there have been very few 
studies on the role of endogenous gibberellins in tracheid 
differentiation in conifers.

In this study, we focused on the role of IAA and GA4 
in wood formation in mature sugi trees. To obtain more 
accurate information on the role of phytohormones, we 
examined xylem formation in a sugi cultivar planted in a 
Nelder plot [18] with different tree densities. Nelder plots 
[18] were developed to analyze the impact of a continuous 
range of densities on the yield of agricultural crops over a 
smaller area than traditional designs to minimize the dif-
ferences in yield related to variability within a site. Many 
researchers have utilized this design in forestry studies [19]. 
In addition, experimental plots with a sugi cultivar can be 
assumed to show a smaller effect of genetic variation on 
xylem formation than plots with sugi trees of unknown 
genotypes. As we previously reported [4], height-to-diame-
ter ratios (H/D ratios) of sugi mature trees were beautifully 
controlled by tree density in the Nelder plots. Therefore, 
sugi cultivars grown in Nelder plots can be assumed to have 
wide range of radial growth and minimal effects of other 

factors (genetic variation and difference of soil conditions) 
that can affect xylem formation. As described previously, 
amounts of endogenous IAA varied seasonally [10, 11]. 
Using the pinning method [20], we try to examine the role 
of endogenous phytohormones separately in each season.

The objectives of the current study were to examine: 
(1) seasonal variation of xylem formation, and amount of 
IAA and GA4 in cambial-region tissues; (2) relationships 
between growth traits and amounts of phytohormones; and 
(3) relationships between amounts of phytohormones and 
indexes of xylem formation in stems of mature sugi cultivar 
trees (Tosaaka) grown in a Nelder plot with different tree 
densities.

Materials and methods

Sample trees and samples for evaluating tracheid 
formation and quantification of phytohormones

Specimens of a 38-year-old sugi cultivar (Tosaaka; 
Table 1) were used. The experimental plots for plantation 
spacing were established within a stand in the national 
forest in Kitago-cho, Miyazaki Prefecture, Japan. Three 
trees with no visible defects were selected per each initial 
density (trees/ha) in the plot. The plot used for this study 
was located in the southern part of Miyazaki Prefecture. 
Miyazaki city’s average annual temperature and precipi-
tation in the sampling year were 17.3 °C and 2590  mm, 
respectively. The altitude of the plot used for this study was 
520  m. Diameter of the trees at breast height (DBH) and 
tree height was measured with a tape measure and ultra-
sonic hypsometer (Vertex III, Haglof, Inc.), respectively. 
Height at crown base was also measured with the ultrasonic 
hypsometer (Vertex III, Haglof, Inc.). The crown length 
was calculated from the height at the crown base and the 
tree height.

To measure the amount of IAA and GA4 in cambial-
region tissues, samples (3  cm (T) × 4  cm (L) × 1  cm (R)) 
of cambial-region tissues sandwiched by the outer bark 

Table 1   Initial tree densities 
and growth traits of sample 
trees

The values represent averages in three trees; values in parentheses indicate standard deviations. Different 
characters show significant differences among density-zoning symbols (p < 0.05)
Symbol tree-density-zoning symbol, Density initial tree density, n number of sample trees, H tree height, 
DBH diameter at breast height, HCB height at crown base, H/D ratio height-to-diameter ratio

Symbol Density 
(trees/ha)

Age n H (m) DBH (cm) HCB (m) H/D ratio (%)

D 4823 38 3 17.0 (2.0)a 22.1 (6.1)a 11.5 (1.1)b 79.7 (14.0)b

E 3349 38 3 18.8 (1.4)a 27.9 (4.0)ab 11.8 (1.4)b 68.0 (5.7)ab

G 1615 38 3 17.5 (2.1)a 25.8 (4.2)ab 11.1 (1.1)b 68.3 (6.9)ab

H 1122 38 3 18.5 (3.4)a 34.0 (11.8)ab 9.3 (1.5)ab 57.0 (12.0)ab

J 541 38 3 20.3 (3.8)a 47.5 (12.3)b 5.4 (2.0)a 43.4 (4.3)a
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and the outermost wood were obtained from the sample 
trees, as listed in Table 1. The samples were obtained from 
a point 1.2 m above the ground in each sugi tree in June, 
August, October, and December 2011 (3 trees × 5 initial 
tree densities × 4 sampling months, for a total of 60 sam-
ples). Immediately after collection, samples were stored 
in a deep freezer (−80 °C) before extraction. Pin insertion 
into the cambium of sample trees was accomplished at each 
sampling date. The samples for the pinning method were 
cut from sample trees after the cessation of xylem forma-
tion to measure indexes for evaluating tracheid formation 
and differentiation.

Measurements of phytohormones in cambial‑region 
tissue

IAA and GA4 in cambial-region tissues were identified and 
quantified by liquid chromatography/mass spectrometry 
(LC/MS). Samples were homogenized and extracted for 
1 h by methanol with antioxidant medium (0.02 M diethyl-
dithiocarbamic acid, Wako, Ltd.). Methanol extraction was 
repeated three times at 4 °C in darkness. To quantify the 
amount of IAA, 500 ng of deuterium IAA (D2-IAA, 97% 
content; Sigma Co., Ltd) and deuterium GA4 (D2-GA4, 
90% content; Olchemim, Ltd) were added to the methanol 
for extraction as an internal standard. The extracts were 
evaporated, and residues were dissolved in 10-ml distilled 
water. The aqueous solutions were then adjusted to pH 2.5 
with formic acid. Supernatants were obtained from the 
aqueous solutions by centrifugal separation, loaded onto 
reverse-phase cartridges (sep-pack cartridge, C18 500 mg, 
Waters), and eluted with 1-ml 80% methanol adjusted to 
pH 2.5. The effluents were subjected to LC/MS.

LC/MS analysis was carried out using a liquid chroma-
tograph (Ultimate 3000, Thermo Fisher Scientific) coupled 
to a mass spectrometer (Q-exactive, Thermo Fisher Scien-
tific) with an ion source operated in the ESI (electro-spray 
ionization) positive and negative mode for IAA and GA4, 
respectively. The column was an Atlantis T3 (100 × 2.1 mm, 
3  μm, Waters), as the mobile phase, methanol containing 
0.1% formic acid (v/v) and distilled water containing 0.1% 
formic acid (v/v) was used, and the flow rate was 0.2-ml/
min for both IAA and GA4. For IAA, the linear gradient of 
methanol containing 0.1% formic acid (v/v) (B) in distilled 
water containing 0.1% formic acid (v/v) (A); 30% B to 70% 
B in 8 min, and 70% B in 2 min was used. For GA4, the lin-
ear gradient of methanol containing 0.1% formic acid (v/v) 
(B) in distilled water containing 0.1% formic acid (v/v) 
(A), 20% B to 90% B in 8 min, and 90% B in 2 min was 
used. Detection and quantification were carried out using 
Q-exactive operated in the positive (IAA) and negative 
(GA4) ion, targeted-SIM mode using calibration curve with 
deuterated IAA and GA4 as internal standards. Targeted 

m/z were 176.0705 (IAA), 178.0830 (D2-IAA), 331.1554 
(GA4), and 333.1678 (D2-GA4). Identification of IAA 
and GA4 was accomplished based on retention time and 
m/z standard of phytohormones (mass tolerance: 3  ppm). 
As described in a previous report [5], amounts of IAA and 
GA4 in the cambial-region tissues are shown as amounts 
(ng) per cambium area (L × T cm2) (ng/cm2).

Measurements of indexes evaluating tracheid formation

To meet objectives (1) and (3), we evaluated cambial 
activity for tracheid formation in each season and indexes 
related to tracheid differentiation. We examined the number 
of tracheids formed in each season, initiation of xylem for-
mation—June, June–August, August–October, and Octo-
ber–December, according to the method described in our 
previous studies [21, 22] using the pinning method [20]. 
We also measured cell wall thickness, cell radial, and tan-
gential diameter in the cross section, and cell wall ratio (%) 
of tracheids formed in each season as indexes for evaluat-
ing tracheid differentiation. Samples for evaluating tracheid 
differentiation were embedded in spurr resin (Polysciences, 
Inc.), and 7-µm-thick cross sections were then obtained and 
stained with toluidine blue. The tracheids formed in each 
season were identified using the pinning method. Accord-
ing to our previously reported method [22], cell wall ratio, 
cell wall thickness, and radial and tangential diameter of 
the tracheids were measured using image J [23]. The accu-
racy of the measurement was 0.3 µm/pixel, and the cross-
sectional indexes were obtained by averaging 10 measure-
ments of different positions in the cross section.

Statistical analysis

For analysis of obtained data, the SPSS statistical analysis 
software (ver. 16 with Regression and Advanced Models) 
was used. Using one-way ANOVA (analysis of variance) 
and multiple comparisons tests (Tukey’s HSD test and 
Bonferroni test), we examined the significant differences in 
indexes evaluating tracheid formation and the amounts of 
phytohormones (Figs. 1, 2) among tree density zones.

Results

Growth traits and tracheid formation of sample trees

As shown in Table  1, there were significant differences 
in growth traits of sample trees, except for tree height, 
among tree-density zones (ANOVA, p < 0.01). We 
observed that the J trees (541 trees/ha) had larger DBH, 
smaller HCB (height at crown base) and lower H/D ratio 
than D trees (4823 trees/ha; multiple comparisons tests, 
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p < 0.01). However, effects of tree density on growth 
traits were not significant among E, G, and H trees (3349, 
1615, and 1122 trees/ha, respectively). Based on the 
results in Table  1, it was assumed that decrease of tree 
density would inhibit the upward movement of the crown 
base and increase of crown length; therefore, increased 
amounts of crown may activate radial growth of trees.

Figure 1A shows seasonal variation of tracheid forma-
tion. A larger number of tracheids were formed at the ini-
tiation of xylem formation—June than in other seasons 
in all tree-density zones. J trees showed a larger average 
number of tracheids than trees in the other tree-density 
zones at the initiation of xylem formation—June and 
June–August, although the difference was not significant 
in each season. J trees continued tracheid formation in 
October–December, while trees in the other tree-density 
zones ceased tracheid formation during this season.

As shown in Fig. 1B, there were significant differences 
in the cell wall ratio of tracheids among tree-density zones 
in June–August, although significant differences were not 
recognized in other seasons (ANOVA, p < 0.01; multi-
ple comparisons tests, p < 0.01). The same results were 
obtained for radial diameter and cell wall thickness of tra-
cheids (data not shown). Based on Mork’s definition, ear-
lywood has a cell wall ratio <50%, and latewood has a cell 
wall ratio ≥50% [24]. As shown in Fig. 1B, G, and H trees 
were assumed to form earlywood tracheids in June–August, 
although other trees in tree-density zones formed latewood 
in the same season. J trees had larger average number of 
xylem cells and smaller average latewood percentage in 
annual rings than trees of the other density zones, although 
the differences in these indexes were not significant (data 
not shown).

Amount of phytohormones in cambial‑region tissues 
of sample trees

As shown in Fig.  2a, there were significant differences 
in the amount of IAA in cambial-region tissues among 
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tree-density zones in June and December. J trees had sig-
nificantly larger amounts of IAA than D and G trees in June 
(ANOVA, p < 0.01; multiple comparisons tests, p < 0.01). J 
trees also had larger average amounts of IAA than trees of 
other tree-density zones in August and October, although 
these differences were not significant. In contrast, J trees 
had significantly smaller amounts of IAA than E, G, and 
H trees in December (ANOVA, p < 0.05; multiple compari-
sons tests, p < 0.05). As previously described, J trees only 
formed tracheids during October–December (Fig. 1a).

Average amounts of GA4 in the cambial-region tissues 
of each tree-density zone varied from 0.15 to 1.83 ng/cm2, 
and were very small in comparison with the amounts of 
IAA (Fig.  2b). There was no significant difference in the 
amount of GA4 among tree-density zones in any season.

Relationships between growth traits and amount 
of phytohormones

We previously reported the positive effects of crown length 
and the negative effects of distance from crown base on the 
amounts of IAA in the cambial-region tissues of the trunk 
[5]. The results in this study were in good accord with 
those of our previous reports (Table 2). In this study, height 
at crown base was used as an index of distance from the 
crown base, because all samples were cut at the same lon-
gitudinal position (1.2-m above ground). The crown length 
was closely related to the amount of IAA in June (p < 0.01), 
moderately related in August, October (p < 0.05), and not 
related in December. The height at crown base was closely 
related to the amount of IAA in June and August (p < 0.01), 
and not related in October and December. H/D ratio 
also was related to amount of IAA in June and October 
(p < 0.01), moderately related in August (p < 0.05), and not 
related in December. No growth traits were related to the 
amount of GA4 except for height at crown base in October. 
It was recognized that the relationships obtained in our pre-
vious study (5) might be related to the seasons with cam-
bial growth activity.

Relationships between amount of phytohormones 
and tracheid formation

We attempted to elucidate the role of phytohormones in tra-
cheid formation. As shown in Fig. 3a and c, IAA amounts 
in June were closely related to number of tracheids formed 
in initiation of xylem formation—June (r = 0.75, p < 0.01). 
IAA amounts in August were moderately related to number 
of tracheids formed June–August (r = 0.55, p < 0.05). How-
ever, the amount of IAA in October and December were 
not related to number of tracheids formed in August–Octo-
ber or October–December, respectively. There was no sig-
nificant correlation between the amount of GA4 and num-
ber of tracheids formed in any season (Fig. 3b). As shown 
in Table  3, amount of IAA and GA4 had no significant 
effect on differentiation of tracheids formed in any season, 
except for the effect in October of amount of IAA on cell 
wall ratio.

Discussion

In this study, we demonstrated that the main role of IAA 
in tracheid formation was promotion of cell division, not 
the control of differentiation related to transition from ear-
lywood to latewood, based on the relationships between 
amounts of endogenous IAA and the indexes of tracheid 
formation (Fig. 3; Table 3). This promotion of cell division 
and lack of relation to differentiation were consistent with a 
previous study on pine trees [7] and our study on sugi trees 
[22], respectively. However, it was assumed that amount of 
IAA in cambial-region tissues would not be found to con-
trol cambial growth cessation and dormancy due to cam-
bial growth cessation in the late season with relatively large 
amounts of IAA in cambial-region tissues (Figs.  1a, 2a). 
As previously described, IAA was actively synthesized in 
elongating shoot apices and transported to the stem cam-
bium, where it then stimulated tracheid production. Recent 
studies revealed that auxin binding to the coreceptor results 

Table 2   Coefficients 
of correlations between 
growth traits and amount of 
phytohormones

Coefficient of correlations were obtained from 15 sample trees. H, DBH, H/D ratio, and HCB were the 
same, as shown in Table 1
CL crown length
**p < 0.01, *p < 0.05

Amount of IAA Amount of GA4

June August October December June August October December

H 0.38 0.07 0.62* −0.07 −0.31 0.06 −0.26 0.36
DBH 0.69** 0.39 0.64* −0.29 −0.05 0.17 0.05 0.37
H/D ratio −0.83** −0.55* −0.70** 0.15 −0.11 −0.20 −0.34 −0.44
CL 0.74** 0.54* 0.57* −0.40 −0.12 0.29 0.26 0.36
HCB −0.70** −0.70** −0.23 0.51 −0.09 −0.36 −0.61* −0.11
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in degradation of the Aux/IAAs through the proteasome 
and derepression of ARF-based transcription of target 
genes [25]. Therefore, IAA related to ARF-based transcrip-
tion of target genes was metabolized. IAA amounts in cam-
bial-region tissues are assumed to be the result of synthesis 
in the crown, transportation, and metabolism in cambial-
region tissues.

As previously reported, crown length and the distance 
from the crown base had positive and negative effects, 
respectively, on the amount of IAA in the stem [5]. We 
hypothesized that crown length is related to the synthesis 
of IAA, and the distance from the crown base is related to 
the transportation and metabolism of IAA. In this study, 
crown length and height at crown base were beautifully 
controlled using a sugi cultivar grown in a Nelder plot 
(Table  1). The correlations previously reported [5] were 
also observed in early and mid-season, although not in 
late season in this study (Table  2). As shown in Table  2, 
the correlation between height at the crown base and IAA 
amount dropped in October. This lack of a relation in Octo-
ber might have been induced by the difference of sensitiv-
ity to IAA among tree-density zones. J trees, trees with 

wider spacing, still had cambial growth activity in Octo-
ber–December (Fig. 1a), with significantly smaller amounts 
of IAA (Fig.  2a); meanwhile, other trees with narrower 
spacing showed decreased cambial growth activity with 
larger amounts of IAA.

It was also reported that the day-length-regulated induc-
tion of cambial growth cessation and dormancy involves 
changes in IAA responses rather than IAA amounts in 
hybrid aspen [26]. Our previous study also showed the 
insensitivity of cambium to applied phytohormones in 
late season in sugi trees [22]. The wider spacing of J trees 
might inhibit the effects of short-day-induced cambial 
growth cessation and dormancy. In October–December, the 
cambium of J trees with sensitivity to IAA might metabo-
lize the endogenous IAA for tracheid formation, resulting 
in significantly smaller amounts of IAA. Meanwhile, trees 
in other tree-density zones might not metabolize IAA, 
resulting in significantly larger amounts of IAA, because of 
short-day-induced insensitivity of cambium to IAA. Previ-
ous studies on pine trees showed relatively smaller amounts 
of IAA in late season compared to other seasons [10, 11]. 
However, as shown in Fig. 2a, IAA amounts in December 

Fig. 3   Relationship between 
phyohormones and number of 
tracheids. The number of trac-
heids in June, August, October, 
and December was the number 
of tracheids formed at initiation 
of xylem formation—June, 
June–August, August–October, 
and October–December, respec-
tively. a IAA amounts, b GA4 
amounts, c coefficient of corre-
lations between phyohormones 
and number of tracheids in each 
season, r coefficients of correla-
tions, **p < 0.01, *p < 0.05
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Cell wall ratio −0.15 0.26 0.60* −0.11 −0.10 0.01
Cell wall thickness 0.27 0.41 0.54 −0.25 −0.17 0.30
R diameter 0.27 0.04 −0.24 −0.23 0.09 0.43
T diameter 0.53 0.20 −0.09 −0.40 0.06 -0.27
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were relatively large compared to levels in other seasons. 
In this study, the reason for the relatively large amounts of 
IAA in late season remains unclear. The synthesis of IAA 
in the crown in late season in this study might be related 
to the environmental conditions of the plot (average annual 
temperature and precipitation: 17.3 °C and 2590  mm, 
respectively).

As shown in Table 2, the H/D ratio was negatively cor-
related with IAA amounts in the stem in June, August, and 
October. We reported that H/D ratio had a significantly 
positive effect on stem stiffness in sugi trees [4]. In addi-
tion, we reported that younger sugi trees forming juvenile 
wood with smaller stem stiffness had much larger amounts 
of IAA than older sugi trees forming mature wood with 
larger stem stiffness [6]. Therefore, large IAA amounts 
might have negative effects on stem stiffness in sugi trees.

In this study, the role of GA4 in tracheid formation 
remained unclear. No direct evidence was obtained to show 
that GA4 is related to tracheid formation and differen-
tiation. Further studies involving controlled environmental 
factors might be needed to elucidate the role of GA4 in tra-
cheid formation.
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