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Abstract
An image dataset of the cross-sectional optical micrographs of the Lauraceae species including 39 species in 11 genera, 
capturing at least one full annual ring, was investigated by scale-invariant feature transform (SIFT), a computer vision-based 
feature extraction algorithm. We found an image of 900 × 900-pixel size at a pixel resolution of ca. 3 µm, corresponding to the 
actual size of 2.65 × 2.65 mm2, as the minimum requirement for the image dataset in terms of the accuracy of the recognition 
at both the genus and species levels. Among the several classifiers investigated, the linear discriminant analysis (LDA) pre-
sented the best performance reaching a maximum of 89.4% in the genus with a species identification of approximately 96.3%. 
Cluster analysis of all the SIFT descriptors for each image yielded practical information regarding the descriptors; they 
recognize selectively the cell lumina, cell corners, vessels, and axial and ray parenchyma cells. Therefore, the difference 
between the genus or species levels was determined per the variation in the quantities of these computer-based properties. 
Another clustering approach, the hierarchal dendrogram, was applied to visualize the numerical distances between the genus 
and species. Interestingly, even Machilus and Phoebe, which are difficult to distinguish by conventional visual inspection, are 
quite distantly classified at the genus level. In contrast, some species in Cinnamomum, Machilus and Litsea were categorized 
into different subgroups rather than the original genus. Microscopic wood identification is found to be possible at the genus 
level; however, the numerical dataset of the morphological features has various overlapping clusters, causing the genus-level 
identification of the Lauraceae to be more difficult than species-level identification.
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Introduction

The Lauraceae family is distributed worldwide mainly in 
warm temperate and tropical regions. It is also found in East 
Asia, and is regarded as an important wood species. For 
example, in ancient times, Phoebe was used as a coffin mate-
rial in China, and Cinnamomum camphora was used as a 
material for building ships and sculptures in Japan. Thus, the 
Lauraceae are a culturally and historically important family 
in East Asia. Although the taxonomy of the Lauraceae is not 
entirely understood, they are known to consist of approxi-
mately 45 genera and over 2800 species. The Lauraceae are 

known to be relatively difficult to distinguish because of 
their vast diversity and wide variety within the family [1]. 
Therefore, the classification of the Lauraceae is complex and 
not easy. However, an unambiguous classification is essen-
tial for understanding their cross-cultural utilization.

Identifying wood species accurately is very important in 
ethnobotanical research on wood usage. Among the several 
methods proposed until now, the microscopic method is 
the most accurate and widely used owing to the tremen-
dous efforts by the wood anatomists and the corresponding 
identification keys proposed by the IAWA (the international 
association of wood anatomists) community. The method 
allows us to mostly identify it up to the genus level.

More recently, identification methods are gradually 
expanding to new techniques such as DNA-based identifi-
cation [2–6] and spectroscopy-based chemometrics [7–12]. 
These methods are used primarily for specific purposes. 
DNA-based identification is a method that uses the inher-
ent DNA sequence of each species, and has the advantage 
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of being able to identify up to the species level. However, 
owing to the lack of a database, it is difficult to use it for 
generalized identification. Chemometrics, combining the 
spectroscopic data and multivariate analysis, is representa-
tive of the facile and nondestructive analysis. However, this 
application is restricted to limited or selected species identi-
fication, and its accuracy is negatively affected by aging that 
is critical when this method is applied to old wood used in 
cultural properties [9].

Recently, wood identification using computer vision-
based methods to extract features from the wood images has 
been receiving an increasing interest. Several methods such 
as the gray level co-occurrence matrix (GLCM) [13, 14], 
local binary pattern (LBP) [15, 16], and higher order local 
autocorrelation (HLAC) [17] have been tested to extract 
features from wood images. Computer vision is a part of 
the diverse field of artificial intelligence, and is one of the 
technologies with the most potential. Currently, computer 
vision algorithms that can be applied to various problems are 
being developed by computer scientists. The selection and 
implementation of these algorithms will vary according to 
the problem that is considered. For instance, it is known that 
Haar-like features and histogram of gradient (HOG) exhibit 
good performance for face recognition and human detection 
and its motions, respectively [18, 19]. Scale-invariant feature 
transform (SIFT) is one of the useful algorithms to detect the 
local features from an image. It was first introduced by D.G. 
Lowe in 1999 [20], and was discussed in an extended paper 
in 2004 [21]. The features detected by SIFT are invariant 
to scale and rotation, and are robust to the changes in the 
illumination and affine. The usefulness of SIFT has already 
been demonstrated in various studies [22–24], and advanced 
algorithms such as the speeded-up robust features (SURF) 
[25], principal components analysis-based local descriptor 
(PCA–SIFT) [26], and gradient location and orientation 

histogram (GLOH) [24] are being developed starting from 
SIFT, for inspiring the various descriptors proposed later.

In this study, a wood classification system based on the 
SIFT algorithm was designed to investigate the Lauraceae 
family, i.e., the structural and anatomical diversity in the 
genera and species is systematically and statistically quan-
tified by computer vision. The relationship between the 
observed computer-based features and anatomical char-
acteristics of wood was comparatively discussed, and the 
applicability of computer-based features for automated clas-
sification was presented. In addition, a hierarchical cluster-
ing was performed to analyze the correlations as well as the 
distances from the genera and species. This paper describes 
a new approach for the quantification of wood structure 
and its application to the anatomy that, we believe, can be 
applied to numerous other fields in wood science.

Experimental procedure

Image dataset

The species in the Lauraceae family that are used for wood 
classification are summarized in Table 1. The wood sam-
ples of 11 genera including 39 species of the Lauraceae 
were received from the RISH Xylarium, Kyoto University. 
The cross-section of the samples were cut using a sliding 
microtome, and stained with safranin. The images were cap-
tured at a low magnification with Olympus™ 2 × (0.08NA) 
PlanApo objective lens, using a BX51 optical microscope 
equipped with DP73 CCD (charge-coupled device) camera 
(Olympus, Japan). Most of the acquired images have an area 
of at least one annual ring. The original size of an image was 
4800 × 3600 pixels, and the resolution was 0.74 µm/pixel. 

Table 1   List of the species in 
the image dataset

a The numbers in parenthesis indicate the number of wood blocks from which the image dataset was col-
lected

Genus Speciesa

Actinodaphne acutivena (1), forrestii (1), mushaensis (1)
Beilschmiedia linocieroides (1)
Cinnamomum camphora (21), glandliferum (2), japonicum (15), longipetiolatum (2), micranthum (1), 

porrectum (1), teniplum (1)
Cryptocarya
Laurus

chinensis (1)
nobilis (3)

Lindera communis (1), glauca (3), thomsonii (2), umbellata (10)
Litsea coreana (18), cubeba (1), elongata (1), glutinosa (2)
Machilus ichangensis (2), japonica (5), kusanoi (1), pauhoi (2), pingii (2), thunbergii (21), 

viridis (2), zuihoensis (1)
Neolitsea acuminatissima (1), acutotrinervia (1), cambodiana (1)
Phoebe lanceolata (1), macrocarpa (1), nanmu (2), neurantha (2), puwenensis (1), sheareri (2)
Sassafras tzumu (3)
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The Lauraceae dataset consisted of 1557 images, and each 
species had more than 8 images.

Image pretreatment

For feature extraction, all the images in the dataset were con-
verted from RGB color to 8-bit grayscale. An initial dataset 
of square 3600 × 3600-pixel images of 0.74 µm/pixel resolu-
tion was cropped from the original micrographs, correspond-
ing to an actual area of 2.65 × 2.65 mm2. Then, a series of 
datasets with decreasing resolutions, 1.47, 2.94, 5.88, and 
11.76 µm/pixel were prepared by bilateral filtering. These 
images of 3600 × 3600 pixels to 1800 × 1800, 900 × 900, 
450 × 450, and 225 × 225 pixels in the same area were tested 
for determining the necessary size and resolution informa-
tion for the classification.

Classification

The flowchart of the experimental procedure including the 
image pretreatment is shown in Fig. 1. The image features 
were calculated from a series of downsized image datasets, 
followed by classification using multiple classifiers.

SIFT algorithm

SIFT is selected as the algorithm to extract image features 
that are known to be invariant to the image scale and rota-
tion. A feature detected by SIFT is called a keypoint. The 
algorithm generates a difference of Gaussian (DOG) from 
the image pyramid, and it detects the local extremes as the 

keypoint candidates in the DOG. Subsequently, the algo-
rithm determines the keypoints that are normally inappropri-
ate as features, by eliminating the candidates present on the 
edge or having a low-contrast.

In the calculation, we adopted the default parameters 
proposed by Lowe [21], namely, the number of layers in 
each octave (nOctaveLayers = 3), value of the Gaussian filter 
applied to the image of each layer (σ = 1.6), contrast thresh-
old (ct = 0.06), and edge threshold (et = 10).

Classifiers

Four different classifiers, namely, k-nearest neighbor (k-NN), 
logistic regression (Logistic_R), support vector machine 
(SVM) with a linear kernel, and linear discriminant analysis 
(LDA) were used for the classification, and the performances 
of the classifiers were compared. The test set and training set 
were randomly selected in a ratio of 2:9, and the calculation 
was repeated 20 times with different sets of test and train-
ing data to obtain the average and standard deviation of the 
accuracy of recognition.

k‑means clustering

To visualize the objects that SIFT selects as keypoints, 
k-means clustering was performed on all the detected fea-
tures from one image of Cinnamomum camphora, and eight 
representative centroid patterns of the SIFT descriptors were 
calculated. The keypoints derived from each pattern were re-
projected on the corresponding image, and their distribution 
was scrutinized in comparison with the anatomical features.

Fig. 1   Experimental flowchart 
of image processing, machine 
learning, and classification

• Lauraceae: 1557 optical micrographs
in cross-section

• 11 genera including 39 species

• Create SIFT descriptor

• 128-dimentional feature vector

• k-nearest neighbor (k-NN)
• Logistic regression (Logistic_R)
• Support vector machine (SVM)
• Linear discriminant analysis (LDA)

• Convert to gray scale

• Image resize

• At genus level

• At species level

IMAGE DATASET PREPROCESSING

FEATURE DESCRIPTION FEATURE DETECTION

• Create scale-space extrema
• Difference-of-Gaussian calculation
• Local extrema detection
• Eliminate inappropriate keypoints

NOITACIFISSALCSREIFISSALC

BY SIFT ALGORITHM
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Hierarchical clustering

An unsupervised hierarchical clustering was performed 
to draw a dendrogram based on the numerical distances 
between the genus and species. The simple Euclidean dis-
tances calculated from the original SIFT descriptors did not 
cause a reasonable clustering; therefore, the dimensional-
ity of the descriptors was reduced by LDA. The cluster-
ing was performed by the agglomerative Ward’s minimum 
variance method [27] using LDA components up to ten as a 
dataset. The above setting was selected by considering the 
cophenetic correlation coefficient [28] that was proposed 
as a measure of how closely a dendrogram preserved the 
pairwise distances between the original unclusterized data 
points.

Programming

All the programs for the image pretreatments and classifica-
tion were written in Python 3.5.2 [29] running on MacOSX. 
The SIFT algorithm and image pretreatments were imple-
mented by the libraries OpenCV [30], NumPy [31], and 
SciPy [32]. The k-means clustering and hierarchical clus-
tering were implemented by the Scikit-learn [33] and SciPy 
libraries, respectively.

Results and discussion

SIFT descriptor and classification

An example of the keypoints detected by the SIFT opera-
tion is presented in Fig. 2a. This algorithm determines vari-
ous local gradient-based keypoints that are expressed by a 

128-bins histogram representing the orientation and mag-
nitude of the gradient around them, as shown in Fig. 2b. 
Numerous keypoints are found from an image. Generally, the 
descriptor obtained by SIFT and used for further analyses is 
a single 128-dimensional vector that is in fact the sum of the 
histograms from all the keypoints in each image (Fig. 2c). 
Briefly, all the images have their own single SIFT descriptor, 
and they have only 128-bins to represent themselves.

A summary of the accuracies in the classification of the 
Lauraceae dataset at various image resolutions is presented 
in Table 2. Among the four classifiers tested, LDA and SVM 
yield better results that are depicted in Fig. 3. Clearly, in both 
the cases, a good performance is obtained from the image 
dataset having a better resolution, with LDA exhibiting a 
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Fig. 2   Keypoints and descriptors in the SIFT algorithm. a Keypoints 
detected in a cross-section of Cinnamomum camphora. The image is 
partially cropped to a size of 225 × 225 pixels from the original size, 

and a total of 220 keypoints are detected; b descriptors of all detected 
keypoints in the image in a; c The sum of the SIFT descriptors repre-
sented in the image in a as well as in the histograms in b 

Table 2   Classification accuracies of the Lauraceae image dataset at 
the genus and species levels by the SIFT algorithm with the four dif-
ferent classifiers

SIFT scale-invariant feature transform, k-NN k-nearest neighbor, 
Logistic_R logistic regression, LDA linear discriminant analysis, SVM 
support vector machine

Image size 
(pixels)

Classification 
level

Classification accuracy (%)

k-NN Logistic_R LDA SVM

3600 × 3600 Genus 85.5 74.3 86.3 84.1
Species 82.2 79.2 93.3 87.8

1800 × 1800 Genus 86.5 77.0 88.2 86.6
Species 84.3 82.6 95.5 90.1

900 × 900 Genus 83.7 81.2 89.4 88.0
Species 80.0 89.4 96.3 95.4

450 × 450 Genus 84.6 75.9 76.5 82.7
Species 82.5 83.6 88.8 89.8

225 × 225 Genus 72.2 65.5 63.5 68.7
Species 67.2 67.5 70.4 75.8
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slightly better performance than SVM. The best accuracy is 
89.4% by LDA and 88.0% by SVM in the genus classifica-
tion, and it is 96.3% by LDA and 95.4% by SVM in the spe-
cies classification mostly, when the 900 × 900 image dataset 
was tested. This implies that the information obtained from 
the 2.65 × 2.65 mm2 area with a resolution of 2.94 µm pos-
sesses the critical information required for identification.

More importantly, it is worth to note that the accuracy 
of the prediction is better at the species level than the genus 
level.

Structure of SIFT

To determine the features that can be extracted from the 
2.65 × 2.65 mm2 area with a resolution of 2.94 µm in the 
cross-section of C. camphora through computer vision, the 
SIFT descriptors were examined via cluster analysis. As 
mentioned earlier, each image provided numerous SIFT 
descriptors and image-size dependency of the keypoints 
was plotted as a dashed line in Fig. 3. Obviously, a damp-
ing of as much as 5 to 3 digits difference in the number of 
keypoints occurred in between 900 × 900 and 450 × 450-
pixel images.

All the SIFT descriptors from the image of 900 × 900-
pixel size were subjected to unsupervised clustering into 
eight virtual classes, and the keypoints within each class 
were re-plotted on the initial image. Four representative 
classes are shown in Fig. 4; the remaining four classes 
were either similar to one of these presented four classes or 
were a mix of multiple classes. Expectedly, the keypoints 
in a given class are found on exactly similar anatomical 
features, and in this case, they are located at the cell cor-
ners, cell lumina, vessel elements, and axial parenchyma 
cells. The centroid histograms for each class are presented 
in Fig. 5, showing clear differences in the histogram pat-
terns. In fact, the number of keypoints that belong to these 

Fig. 3   Variation in the classification accuracy and number of key-
points by reducing the image size at the genus and species levels

Fig. 4   SIFT keypoints clustered by k-means clustering in the cross-
section of Cinnamomum camphora. The images show an enlarged 
part, and the keypoints are detected in an image of 900 × 900 pixels. 

The keypoints in each image are mainly located at the cell corners 
(a), cell lumina (b), vessel and axial parenchyma cells (c), and cell 
wall of the vessel and ray parenchyma cells (d)
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Fig. 5   SIFT descriptors of each class indicating different anatomical features as categorized by k-means clustering
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patterns of histograms differs with the image, species, and 
genus, as a result of which SIFT allows us to perform the 
classification.

Resolution dependent keypoints distribution

The 900 × 900-pixel images with 2.65 × 2.65 mm2 area and 
a resolution of 2.94 µm in the cross-section, appear to be 
the most suitable setting for performing further analysis in 
terms of the classification accuracy and memory and compu-
tational time load. To confirm, the composition of the shift 
descriptors of the C. camphora images was re-investigated 
with respect to the change in the image resolution. As shown 
in Fig. 6, the composition of the features is almost equiva-
lent for 3600 × 3600 and 1800 × 1800-pixel images. In these 
images, the keypoints detected at the cell corners are approx-
imately 50% of the total, of which approximately 40% are 
detected in the cell lumina. In the case of the 900 × 900-pixel 
image, the compositional ratio at the cell corner and cell 
lumina decreases to 47.9% and 36.8% respectively, which is 
slightly less than for the larger images. This may be owing 
to the fact that the feature extraction capability of SIFT is 
influenced by the image size, and thus, the ratios of the com-
position of the same anatomical features are somewhat dif-
ferent. However, in comparison with the images smaller than 
450 × 450 pixels, the 900 × 900-pixel image set is found to 
possess reasonable information that can be provided from 
the images larger than itself.

Overall, the image size, i.e., the resolution, is a very 
important factor in the classification, and the 900 × 900-
pixel images with 2.65 × 2.65 mm2 area and a resolution of 
2.94 µm in the cross-section are essential to expect a satis-
factory performance. Furthermore, it is interesting to note 
that computer vision suggested that the numbers or localiza-
tion of the cell corners are species-specific, and this could 
never be provided from a human vision.

Unsupervised hierarchical clustering

Figure 7 shows the dendrograms at the genus and species 
levels with cophenetic correlation coefficients of 0.60 and 
0.65, respectively. As described in the experimental sec-
tion, LDA reduced the datasets of the SIFT descriptors for 
the 900 × 900-pixel images. The cophenetic coefficient is 
the parameter, used in biostatistics, that in the dendrogram 
closely represents the actual numerical distances between 
any paired data. Thus, the variation in the data in a given 
branch is considered to be larger than in the genus compared 
with in species clustering. This is consistent with the result 
of the classification accuracy, as described earlier. In genus 
level clustering shown in Fig. 7a, eleven genera are blanched 
into 4 groups. Machilus belonged to the same group with 
Cinnamomum and both the species are in very close distance 
to each other, although in the actual phylogenetic relation-
ship [5, 6], Machilus is close to Phoebe. In practice, with 
microscopic inspection, some species in Machilus are known 
to be difficult to be distinguished from those of Phoebe, even 
by skilled wood anatomists. As shown in Fig. 7a, in contrast 
computer vision, Pheobe is sub-grouped differently from the 
majority of species in Cinnamomum, Machilus and Litsea.

In the dendrogram at the species level (Fig. 7b), various 
species are sub-grouped independently from their original 
genus. Specifically, the species in Cinnamomum, Machilus 
and Litsea have been randomly mixed to form new sub-
groups. The accuracy of species prediction by LDA being 
as high as 96%, the dendrograms suggest the presence of 
morphological similarity, although it is invisible unless com-
puter vision is applied.

Numerical and real phylogenetic trees

With the classification by SIFT depending only on the cross-
sectional morphological features of wood, it is not surpris-
ing that both at the genus and species levels, the relative 

Fig. 6   Variation in the compo-
sitional ratio of the anatomical 
features due to the reduction in 
the image size. V, vessel; AP, 
axial parenchyma cell; R, ray 
parenchyma cell; * Standard 
deviation
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numerical distances of each genus and species are slightly 
different from the reported phylogenetic relationships [5, 
6]. According to Liu et al. [5], who studied the phylogenic 
relationships of 409 individuals representing 133 species 

of 12 genera in the Lauraceae using DNA barcoding, 44 
individuals from the ten species were misclassified by the 
form taxonomists. This supports the fact that the morpho-
logical features of the Lauraceae are indeed complex to be 

Fig. 7   Dendrograms calculated 
by the Euclidean distance with 
Ward’s clustering method. Den-
drogram at the a genus level and 
b species level. In the figure, 
* is the cluster size; **is the 
dominant species in the cluster 
(number of images of the spe-
cies in the cluster/total number 
of images of the species in the 
dataset), and *** is the minor 
species in the cluster
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classified unambiguously. As shown in Table 2 and Fig. 3, 
the fact that the numerical classification by SIFT is more 
accurate at the species level than at the genus level, implies 
that the structural features of the species in a given genus 
are similar to those in another genus, making the genus level 
classification difficult. This accounts for what the anatomists 
say about the Lauraceae.

Conclusion

Feature extraction by SIFT followed by LDA as a classifier 
allowed us to classify accurately 11 genera and 39 species in 
the Lauraceae. The extracted features are found to be related 
to the distributions of the vessels, parenchyma cells, fib-
ers, and ray cells, and thus, providing a new perspective on 
species-specific morphology. Though such an approach is 
still relatively new in the wood anatomy, the potential of the 
technique seems promising, as the computer vision allows 
us to observe cell corners as a feature which so far has not 
been considered as species-specific. Ultimately, deep learn-
ing by a convoluted neural network may achieve complete 
automated species identification in reality. Finally, the quan-
tification of two-dimensional image data by computer vision 
would also allow us to predict the physical and mechani-
cal features of a given wood, if we design the features to 
reflect the porosity, anisotropy, and ratios of cell types for 
instance. These lines of investigation are in progress and will 
be reported elsewhere.
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