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compound emissions from three softwoods 
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Abstract 

We used a small chamber method to examine volatile organic compound (VOC) emissions such as α-pinene, 
β-pinene, and limonene, from three softwood species in Hokkaido, northern Japan. Tests were conducted for 4 weeks 
to investigate how the rate of VOC emission changed over time. All VOC emission rates rapidly decreased and could 
be explained by the sum of two exponential functions. The model was rewritten as a hierarchical Bayesian model to 
estimate the change in emission rates over time to estimate both intraspecies and interspecies variations. The Markov 
chain Monte Carlo method was then used to estimate the parameters. Posterior distributions over time were also pre-
dicted for VOC emission rates. Then VOC concentrations were simulated using the estimated posterior distributions 
for a typical room size (30 m3). Our results suggest that high VOC concentrations would shortly occur after installa-
tion of wood furnishings, even with adequate ventilation, and that those peak values would exhibit large variations. 
However, the variations would decrease over time to species-specific VOC concentrations. The model incorporated 
rather simplified assumptions due to small amount of data used. More intense investigations are needed to gain more 
accurate and objective predictions.
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Introduction
Guidelines and standards for indoor air concentra-
tions of volatile organic compounds (VOCs) have been 
established in many countries following concerns about 
indoor air quality. Wood composite materials are iden-
tified as a potential source of indoor air pollutants, and 
their emission behaviors have been thoroughly inves-
tigated [1, 2]. We had derived a regression model to 
evaluate acetaldehyde emissions over time from wood-
based materials [3]. Solid wood emits terpenes such as 
α-pinene, β-pinene, and limonene [4]. Some researchers 
have reported that inhalation of wood oils containing ter-
penes promotes relaxation [5]. Suzuki et al. [6] revealed 
that α-pinene reduced fatigue in car drivers. However, 
inhaling large concentrations of terpenes in dwellings 
may be unhealthy. Exposure to high concentrations of 

α-pinene [7] and limonene [8] has been shown to cause 
sensory irritation in mice. Ozone–terpene reactions form 
potentially toxic air pollutants [9]. An indoor air quality 
survey of 14 houses in Tokyo (1995–1998) showed that 
the median concentrations were 15.1 μg/m3 for α-pinene 
and 10.0  μg/m3 for limonene [10]. A more recent sur-
vey (2007–2008), conducted by the same survey team in 
13 different houses, found that the median concentra-
tions were 214  μg/m3 for α-pinene and 53.2  μg/m3 for 
limonene, with a maximum of 3140 μg/m3 for limonene. 
The surveying authors suggested that an increased use of 
solid woods instead of wood composites or use of alter-
native solvents instead of regulated solvents is respon-
sible for the higher indoor concentrations of α-pinene 
and limonene in homes [11]. Furthermore, to encour-
age the consumption of domestic plantation softwoods, 
the Japanese government has been recently promoting 
an increased use of wood furnishings in public build-
ings. Therefore, solid softwood furnishings are expected 
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to become more widespread in both public facilities and 
private living spaces.

Most previous studies have focused on the emission 
characteristics of adhesive-derived substances, such as 
formaldehyde from wood composite materials, which 
are highly industrialized products. In contrast, the emis-
sion behavior of solid softwoods used as furnishings has 
not been thoroughly investigated. Solid wood has a com-
plex tissue structure compared with wood composites. 
In fact, emission properties of solid wood might widely 
vary, both within and among tree species. Better insight 
into VOC concentrations in newly constructed build-
ings could be obtained with more detailed data on VOC 
emissions of softwoods over time. Such data would also 
be useful for isolating the source(s) of terpene concentra-
tions in buildings (i.e., whether they originate from wood 
or from transient sources, such as consumer products 
that contain terpenes as a flavoring agent or solvent).

In this study, we examined emissions over time of 
α-pinene, β-pinene, limonene, and total volatile organic 
compounds (TVOC) emanating from three common 
and industrially important softwood species grown in 
Hokkaido, northern Japan. We employed Bayesian hier-
archical modeling to develop robust emission-over-time 
models that could quantify intraspecies and interspecies 
variations in emissions. Bayesian modeling describes 
parameters as probability distributions. This approach 
can describe arbitrary probability distributions and thus 
can be efficient when skewed distributions are expected, 
such as the logarithmic normal distributions that are 
often observed in measurements of chemical concentra-
tions. Hierarchical modeling has a multi-level structure. 
In this study, we investigated a two-layer model: one layer 
describing emission behaviors common to all species, 
using entire data to avoid species-specific overfitting, 
the other layer describing species-specific parameters to 
model variations in individual species using data from 
individual species. We used the Markov chain Monte 
Carlo (MCMC) method to obtain model parameters. The 
Bayesian model and the MCMC method provided both 
point estimates for model for those parameters. To dem-
onstrate the advantages of using Bayesian predictions to 
explain variation, we conducted indoor air concentration 
simulations using the distributions that we derived from 
the model.

Materials and methods
Materials
We collected five logs of todomatsu (Abies sachalinensis), 
five logs of karamatsu (Larix kaempferi), and two logs of 
akaezomatsu (Picea glehnii) from commercial forest plan-
tations; all sample pieces were prepared from heartwood. 
The logs were sawn to 30 mm in thickness and kiln-dried. 

The specific drying conditions applied to each species to 
obtain a final moisture content of 15%. Therefore, todo-
matsu samples were dried at a maximum temperature of 
80  °C for 6 days, the karamatsu samples were dried at a 
maximum temperature of 85 °C for 5 days, and the aka-
ezomatsu samples were dried at a maximum temperature 
of 80 °C for 6 days. After drying, the sawn samples were 
planed to a thickness of 22  mm and then conditioned 
for at least 2 weeks under a relative humidity of 50% at 
20  °C. We then planed both surfaces of each sample to 
an additional 1 mm to obtain fresh emission surfaces and 
to remove any contamination that might have collected 
on the wood during the conditioning process. These 
remaining 20  mm sections were cut into dimensions of 
160  mm × 160  mm × 20  mm. When preparing sections, 
we carefully avoided large knots (> 10 mm in diameter), 
bark pockets, resin pockets, and reaction wood. After this 
final preparation of the samples, the samples were tested 
immediately (within 1 h) for their emissions properties.

Small chamber method
We measured emissions in small (20  L), stainless steel, 
cylindrical chambers in accordance with protocol estab-
lished by Japanese Industrial Standard A 1901 [12] and 
prior research on gaseous emissions from solid wood 
[13]. We placed the entire measurement system, includ-
ing the small chambers, into a thermostatically controlled 
room maintained at 28  °C. Clean air of 50% relative 
humidity was supplied to each small chamber using an 
air supplier (AOE3200, GL Sciences, Tokyo, Japan) at an 
air exchange rate (air volume ventilated per hour divided 
by volume of the chamber) of 0.5  h−1. Sample wood 
pieces were inserted to a sealed stainless steel box with 
a window of 147 mm × 147 mm to determine the surface 
area of emission and to prevent emissions from cross sec-
tions and the back side. A pair of boxed sample pieces 
was placed into each chamber to obtain a loading factor 
(emission surface area divided by chamber volume) of 
2.2  m2/m3. Two replicate measurements were made for 
each log sample. Air sampling was performed on 1, 3, 7, 
14, and 28 days after placing the test pieces into the test 
chambers. However, some sampling had to be postponed 
for 1–2 days due to instrumental shortcomings, such as 
gas chromatography (GC) instrument failure and sam-
pling tube shortage.

Sampling and analysis
We used a GC to quantify concentrations of α-pinene, 
β-pinene, limonene, and TVOC emissions. Using an air 
sampling pump (SP208-100 dual, GL Sciences), the air from 
chambers was passed through a sampling tube (AERO TD 
GL-Tube, GL sciences) packed with 0.1  g of Tenax TA 
adsorbent resin (20/35 mesh, GL sciences). We sampled 
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1000 mL of air at a rate of 33 mL/min or 300 mL at 10 mL/
min to avoid the exceeding capacity of the absorbent. We 
added 100  ng of toluene-d8 (41063-96, Kanto Chemical, 
Tokyo, Japan) to each sampling tube as an internal stand-
ard. These sampling tubes were desorbed in a thermal des-
orption system at 240 °C for 10 min (CP4020, Varian, CA, 
USA) attached to a GC equipped with flame ionization 
detector (GC-4000, GL sciences). We then separated the 
desorbed sample in helium carrier gas by a column (RTX-
Volatiles; 60  m × 0.25  mm × 1.0  μm df; Restek, PA, USA) 
with the following temperature regime: the temperature 
was increased from 50 to 90 °C at a rate of 4 °C/min, from 
90 to 250  °C at a rate of 10  °C/min, and then maintained 
at 250  °C for 14  min. We calibrated α-pinene, β-pinene, 
and limonene concentrations with the following stand-
ards: (+)-α-pinene (Aldrich 268070-5G, Sigma-Aldrich), 
(−)-β-pinene (Aldrich 402753-1G, Sigma-Aldrich), and 
(R)-(+)-limonene (Fluka 62118-1ML, Sigma-Aldrich), 
respectively. We calculated TVOC concentrations as tolu-
ene-equivalent values based on the total area of all peaks 
detected between n-hexane and n-hexadecane using the 
calibration curve for toluene [14]. Toluene concentration 
was calibrated using a VOC standard mixture (VOC stand-
ard stock solution mix III, 44096-96, Kanto Chemical). The 
limits of quantification were 3  μg/m3 for α-pinene, 2  μg/
m3 for β-pinene, 5 μg/m3 for limonene, and 310 μg/m3 for 
TVOC. All values below the limit of detection (LOD) were 
replaced with LOD/2 to enable statistical analyses [15].

Emission modeling
Emission rates were calculated as follows:

where R is the emission rate (μg/m2/h), C is the cham-
ber’s air concentration (μg/m3), n is the ventilation rate 
(h−1), and L is the loading factor (m2/m3).

To explain how the rate of emission changed over time, 
theoretical and empirical models (such as mass transfer 
models [16], power function models [17, 18], and first-
order decay models [17, 18]) were proposed and applied. 
Chaudhary et al. [19] pointed out that a two-phase model 
that employs a sum of two exponential functions agreed 
best with observed emissions in a meta-analysis of 50 pub-
lished chamber studies of wood and wood composite prod-
ucts. The results of Suzuki et al. [3, 20] were consistent with 
those of Chaudhary et  al. [19] when they applied a two-
phase model for acetaldehyde emissions from wood-based 
materials. Based on these studies, the following emission 
model was used:

(1)R = C ×
n

L
,

(2)R = R1 + R2 = R01e
−k1t + R02e

−k2t ,

where R1 is the emission rate during Phase 1, R2 is the 
emission rate for Phase 2, R01 and R02 are the initial emis-
sion rates, and k1 and k2 are the coefficients that account 
for the decrease in emission concentrations during 
Phases 1 and 2, respectively.

Rate R1 (with a larger value of k1) dominates the first 
emission stage (Phase 1). Over time, R1 decreases rapidly 
and R2 (with a smaller value of k2) dominates (Phase 2). 
R1 is considered to reflect a desorption process from a 
surface of a material, whereas R2 is considered to reflect a 
diffusion process in a material [21].

We employed Bayesian hierarchical modeling and 
the MCMC method to determine the parameters of the 
model. In prior research, parameters were estimated 
with a least squares method [3]. These methods estimate 
parameters as points. In contrast, the Bayesian method 
estimates parameters as probability distributions derived 
from prior distributions and likelihood using Bayes’ theo-
rem, as follows:

where θ is the parameter of the model, p(θ|D) is the pos-
terior distribution after data D are observed, p(D|θ) is the 
likelihood of observing D given θ, p(θ) is the prior dis-
tribution before observation of D, and p(D) is a normal-
izing constant. The normalizing constant is difficult to 
calculate analytically. The MCMC sampler generates ran-
domized samples from a probability distribution that are 
proportional to the posterior distribution and thus pro-
vides a precise approximation of the posterior distribu-
tion [22]. Detailed explanation for the MCMC method is 
beyond the scope of this paper.

A hierarchical model was constructed for each VOC 
and TVOC. Each VOC was assumed to have a unique 
prior distribution of initial emission factors, R01 and 
R02. In contrast, k1 and k2 were assumed to have values 
that were independent of any particular VOC. This later 
assumption is supported by Chaudhary and Hellweg’s 
meta-analysis [19], which reports that there are no sta-
tistically significant differences in decay rates for various 
VOCs emitted from the same material nor for the same 
VOC emitted from different wood products (including 
solid wood).

If Rijt is the observed emission rate of a certain VOC 
from test material j of tree species i at time t (h), then the 
observed emission rate, including variation among test 
materials within a tree species, is modeled by the follow-
ing equation:

(3)p(θ |D) =
p(D|θ)p(θ)

p(D)
,

(4)
Rijt ∼ LogNormal

(

log
(

R01ie
−k1t + R02ie

−k2t
)

, σr

)

,
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where LogNormal(μ, σ) is the probability density func-
tion of a logarithmic normal distribution with parameters 
of μ and σ, R01i and R02i are the initial emission rates for 
tree species i (i =1, 2, 3), and σr is the parameter explain-
ing the variation between individual test materials. To 
avoid complexity and divergence of the MCMC sampling 
results, we assumed that parameters k1, k2, and σr were 
not affected by species of tree examined. We modeled the 
initial emission rates for each tree species, R01i and R02i, 
as follows:

where Normal(μ, σ) is the probability density function 
of a normal distribution with a mean of μ and standard 
deviation of σ, R̄01 and R̄02 are the averages for the ini-
tial emission rates for all tree species for Phases 1 and 2 
(respectively), and σ1 and σ2 are the parameters that rep-
resent differences among species, respectively. We used 
a logarithmic transformation to avoid negative values. 
Weakly informative prior distributions were used for 
R̄01i and R̄02i . These prior distributions had lower limits 
of zero, and upper limits were derived from the literature 
[13]. The upper limit for prior distributions of emission 
rates is shown in Table 1.

The prior distributions for σ1 and σ2 were non-inform-
ative and were automatically set by the MCMC software. 
Based on background information on acetaldehyde emis-
sions from wood-based products in the literature [3, 20] 
and on statistical results of Chaudhary and Hellweg [19], 
the value of k1 is considered to be somewhere between 
0.0 and 0.1, whereas the value of k2 is assumed to be 
between 0.0 and 0.005. To achieve this range in values, 
the specific prior distributions of k1 and k2 were set as fol-
lows [23, 24]:

where mkp is the mean of kp, skp is the standard deviation 
of kp (p = 1, 2), and ap and bp are the upper and lower 

(5)log(R01i) ∼ Normal
(

log
(

R̄01

)

, σ1
)

,

(6)log(R02i) ∼ Normal
(

log
(

R̄02

)

, σ2
)

,

(7)kp ∼ Normal
(

mkp, skp
)

,

(8)mkp =
ap + bp

2
,

(9)skp =
bp − ap

4
,

limits of kp, respectively. With these prior distributions, 
the probability of that kp is within the assumed intervals 
is 0.68. We used the statistic program R (version 3.4.3) 
[25] and the MCMC sampling software STAN [26] pack-
age for R (Rstan version 2.17.3) [27] to perform MCMC 
sampling.

Results and discussion
Emission rates
The observed emission rates for of α-pinene, β-pinene, 
limonene, and TVOC are shown in Fig.  1. The emis-
sion rates of todomatsu were lower than the other two 
tree species. The VOC α-pinene was the dominant com-
pound emitted from karamatsu and akaezomatsu woods. 
Emission rates for most VOCs monotonically decreased 
throughout the observation period, except for β-pinene 
and limonene from some of the tested todomatsu wood 
samples. Emission rates decreased most rapidly dur-
ing the 1st  week of the study and the rate of emissions 
steadily slowed over time. After 4 weeks, emission rates 
of α-pinene, β-pinene, limonene, and TVOC decreased 
70–80% for all species evaluated in the study.

Emission modeling
Four chains of 3500 samples were generated by the soft-
ware. The first 1000 steps of each chain were ignored as 
a warm-up sequence, after which 10,000 MCMC sam-
ples were acquired. We confirmed the convergences of 
all parameters by examining the Gelman–Rubin statis-
tic R̂ < 1.1 [28]. Parameters estimated by the MCMC 
method are shown in Tables  2 and 3. Estimated emis-
sion rates generated from the parameters and curves 
of the model are shown in Fig. 1. The posterior median 
was chosen as the representative value because the dis-
tributions of parameters were skewed. The light and dark 
gray areas of Fig. 1 show 95% and 50% posterior predic-
tion intervals, respectively. Note that the gray areas show 
predicted emission rates and not the credible interval of 
model curves.

The predicted emission rates of akaezomatsu wood 
varied more widely than the predicted emission rates for 
the other two tree species. This is due to the wider pre-
diction intervals for R01 and R02 values, which may reflect 
the smaller number of samples we tested for akaezom-
atsu wood. The predicted limonene emission rates for 
todomatsu varied less than the observed data. This is pre-
sumably due to the hierarchical model-specific phenom-
ena called “shrinkage,” in which parameters (in this case, 
R01 and R02) approach the mode of parameters higher in 
the hierarchy ( ̄R01 and R̄02 ) [29]. The degradation model 
(of emission curves with point estimators of parame-
ters) fit the observed data and 50% prediction intervals. 
Equation  2 (with a point estimator of the parameters) 

Table 1  Upper limit of  prior distributions of  initial 
emission factors

α-Pinene β-Pinene Limonene TVOC

R01, R02 (μg/m3) 1000 200 200 2000
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Fig. 1  Relationships between elapsed time and emission factors of VOCs and TVOC. The dots show observed data. Light and dark gray areas show 
Bayesian prediction intervals of 95% and 50%, respectively. The black lines show the emission model based on median values predicted at various 
time intervals
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can be used for obtaining simple point estimates, espe-
cially when estimating emissions over a long time scale. 
Variations can be also estimated with the parameter σr. 
Furthermore, the MCMC samples generated with the 
model contained 10,000 predicted data points for every 
elapsed hour. This means that emission rates at an arbi-
trary elapsed hour can be predicted both in a single rep-
resentative value, such as median, and in the shape of 
datasets. Using such datasets, the probability of an emis-
sion rate being lower or higher than a given value can be 
easily estimated by summing the number of affirmative 
values and then dividing the sum by the total number of 
obtained data points.

With conventional statistics, model parameters are 
estimated as points. Conventional methods can also esti-
mate prediction intervals, but such methods assume that 
variations have been generated from normal distribu-
tions. Therefore, prediction intervals of emissions may 
include values less than zero, a nonsensical result rela-
tive to emission rates and concentrations. In contrast, the 
hierarchical Bayesian modeling approach and the MCMC 
method provide reliable probability distributions for 
changes in VOCs over time that reflect both interspecific 

and intraspecific variations. Bayesian modeling explains 
observed data quite well, enabling one to describe skewed 
distributions (such as a logarithmic normal distribution) 
and estimate prediction intervals in VOC emission rates 
that are positive. In this paper, we used informative prior 
distributions based on data from previous research. This 
approach could be subjective, but prior distributions 
would be supplanted by enough data, and these results 
tend to converge on the same posterior distribution 
regardless of different prior distributions [30]. Therefore, 
more measurements provide more objective and precise 
estimates of changes in VOC emissions over time.

Simulation of indoor air concentrations
We simulated changes in indoor TVOC concentra-
tions to demonstrate the advantage of Bayesian predic-
tions and datasets generated by the MCMC method. 
Because MCMC samples are randomly sampled val-
ues generated from posterior distributions of emission 
parameters, MCMC samples represent VOC emission 
properties that could arise under the observed conditions 
and defined prior distributions. Using the MCMC gener-
ated sample data in other model functions, new useful 

Table 2  Bayesian 95% credible interval of R01 and R02

Initial emission rates (μg/m2h)

Todomatsu Karamatsu Akaezomatsu

Lower limit Median Upper limit Lower limit Median Upper limit Lower limit Median Upper limit

α-Pinene

 R01 1 9 57 6 560 2291 2 150 1039

 R02 4 6 9 76 150 240 33 67 116

β-Pinene

 R01 1 4 23 4 55 237 2 21 125

 R02 2 3 5 9 16 25 3 6 11

Limonene

 R01 1 11 53 5 48 184 2 46 233

 R02 7 9 12 17 24 32 19 30 42

TVOC

 R01 10 130 408 377 758 2023 58 361 1203

 R02 98 137 172 212 321 428 135 206 284

Table 3  Bayesian 95% credible interval of k1, k2 and σr

k1 k2 σr

Lower limit Median Upper limit Lower limit Median Upper limit Lower limit Median Upper limit

α-Pinene 0.014 0.050 0.101 0.0010 0.0021 0.0029 0.76 0.87 1.00

β-Pinene 0.016 0.052 0.105 0.0010 0.0020 0.0028 0.81 0.92 1.06

Limonene 0.016 0.049 0.100 0.0013 0.0020 0.0025 0.50 0.57 0.65

TVOC 0.012 0.028 0.078 0.0010 0.0017 0.0022 0.35 0.40 0.46
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values (generated quantities) and their distributions can 
be computed.

When adsorption onto walls and inflow from outdoors 
is negligible, the mass balance of a test room can be 
described as follows:

where C(t) is the concentration of a VOC at time t (in 
μg/m3). Substituting Eq. 2 for Eq. 10, assuming an initial 
VOC concentration of zero, provides the following solu-
tion [20]:

We already investigated this model by comparing 
simulation results with actual indoor air concentration-
by-time sequences [20]. In this study, acetaldehyde 
emission rates from wood-based materials, such as ply-
wood and composite floorings, were acquired using the 
small chamber method. The time series of the acetalde-
hyde emission rates corresponded reasonably well with 
the model described by Eq.  2. In addition, simulations 
of indoor air concentrations were also conducted using 
Eq.  11 and the parameters of Eq.  2. Then those wood-
based materials were put into a real-scale test room. We 
can reasonably assume that the observed acetaldehyde 
concentrations in the test room were similar to our simu-
lated results. Because the substances we discussed in this 
current paper can also be described by Eq. 2, we assume 
that Eq. 11 could be applied to VOCs as well.

We calculated concentration sequences using Eq.  11 
and MCMC samples of R01, R02, k1, and k2. The simula-
tion condition was a room with 12.7  m2 of floor space, 

(10)
dC(t)

dt
= LR(t)− nC(t),

(11)

C(t) =
LR01

(

e−k1t − e−nt
)

(n− k1)
+

LR02

(

e−k2t − e−nt
)

(n− k2)
.

2.4 m of ceiling height, a 0.5 h−1 of ventilation rate (the 
same conditions as a typically sized room used to test 
emissions [20]), and 25.4  m2 of todomatsu, karamatsu, 
or akaezomatsu wood surface. For modeling simplic-
ity, the remainder of surfaces in the room was assumed 
to emit no VOCs. Predicted TVOC concentrations from 
time zero to 200 h are shown in Fig. 2. Because we gen-
erated our MCMC samples from posterior distributions 
of TVOC emission parameters, the predicted concentra-
tions should adequately reflect variations of the TVOC 
parameters. The predicted concentrations contained 
no negative values and showed the types of asymmetri-
cal distributions often observed in VOC concentrations. 
The advantage of using the MCMC method is that it can 
describe non-normal distributions, unlike estimates of 
conventional least-square parameters that premise nor-
mal distributions. From the predicted concentration-
by-time sequences, TVOC concentrations peaked 7–8 h 
after emissions started. Around the peak period, predic-
tion intervals in TVOC concentrations were wide, reflect-
ing wide variations in R01 and R02. However, as TVOC 
concentrations decreased predicted variations contracted 
(became more narrow). Our simulations suggested that 
a large variation in initial TVOC emission rates within 
any given wood species do not affect concentrations over 
the long term. This means that although excessively high 
concentrations caused by large variations of initial emis-
sion rates can occur in the early stage (< 24 h) of TVOC 
emissions, TVOC concentrations eventually converge 
toward a median value, as indicated by the solid black 
lines in Fig.  2. However, variations among species do 
affect long-term TVOC concentrations, as depicted with 
todomatsu and the other two species we examined. The 
estimated time (at 75% probability) at which the TVOC 
concentrations were < 400  μg/m3 (the Japanese indoor 

Fig. 2  The simulation results of TVOC concentration sequences, by wood species, for a 30.5 m3 room ventilated at a ventilation rate of 0.5 h−1. Note: 
Light and dark gray areas depict Bayesian prediction intervals of 95% and 50%, respectively. The black lines show the median value for predicted 
concentrations
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air provisional guideline value for TVOC) [31] are 18 h 
for todomatsu, 226  h for karamatsu, and 82  h for akae-
zomatsu. Our data on estimated changes in TVOC con-
centrations over time suggest that even with adequate 
ventilation, high concentrations of TVOCs occur shortly 
after a newly manufactured softwood product is intro-
duced into a space; however, TVOC concentrations 
quickly decline due to both a decrease in the rate of emis-
sions from the newly introduced wood and ventilation of 
the surrounding space. Therefore, a ventilation rate large 
enough to dissipate VOCs (e.g., by opening windows) 
should be recommended for the first 24 h after softwood 
products are introduced into a living space. Simulations 
like the one we used in this study would be useful for 
estimating the rate at which wood-associated odors are 
dissipated.

Conclusion
We investigated α-pinene, β-pinene, limonene, and 
TVOC emissions from three softwood species har-
vested in Hokkaido, northern Japan. After 4  weeks in a 
small chamber, the emission rates of α-pinene, β-pinene, 
limonene, and TVOC decreased 70–80% in all three 
species. We employed a hierarchical Bayesian mod-
eling approach and the MCMC method to estimate 
changes in the rate of VOC emissions over time, taking 
into account both intraspecies and interspecies varia-
tions. The decrease in emission rates that we observed 
was described by a sum of two exponential functions 
and the parameters acquired the shape of probability 
distributions. These parameters and prediction intervals 
were based on both emission behaviors common to all 
species and species-specific parameters. A room-scaled 
simulation was performed to predict TVOC concentra-
tions using the obtained models. The models showed that 
TVOC concentrations would peak at 7–8 h after placing 
wood furnishings in a room. At the peak emission period 
(after initially placing the wood in the chamber), the 
Bayesian prediction intervals were wide, reflecting high 
variations in initial emission rates. However, the predic-
tion intervals narrowed over time. In contrast, variations 
in VOC concentration between species were maintained 
throughout the simulation period.
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