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Abstract 

Wood is a highly heterogeneous material characterized by a number of properties that vary significantly among 
samples. Even in woods of the same density, substantial differences in properties show up depending on the distribu-
tion pattern of their cell walls. With the aim of deep understanding of the wood variation, we examine this pattern 
from the physical perspectives using samples of the same density but with significantly different shrinkages. The 
power spectrum, which represents the regularity of the occurrence of cell walls or lumen, was obtained through 
Fourier transform processing of micrographs of the transverse sections of wood samples. The set of eigenvalues 
calculated from the variance–covariance matrix comprising the spectra is identified with a Hamiltonian representing 
the energy eigenstate of the wood. The cell wall distribution can then be analyzed from within thermodynamics and 
statistical mechanics. The eigenvalues from the images of latewood were widely distributed compared with those 
from earlywood. The first eigenvalue is equivalent to the Helmholtz free energy, and thus the high-shrinkage samples 
showed large Helmholtz free energy because of the high presence of latewood. The Shannon entropy calculated 
from the probability associated with each energy eigenstate was larger in images of earlywood than latewood. That 
is, low-shrinkage samples have a more homogeneous structure than high-shrinkage samples. These results were 
strongly consistent with observations from micrographs and previous knowledge of the physical properties of woods. 
The physical approaches proposed in this study is independent of the origin of the data and therefore has a wide 
application.
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Introduction
Microscope observations of wood show that for each 
wood species cells of various sizes and shapes are 
arranged in identifiable patterns [1, 2]. The differences 
in cell arrangements can be identified from the distribu-
tion of the cell walls. The pattern of its distribution deter-
mines the characteristics of the wood species. If the cell 
wall is densely packed, wood density simply increases and 
strength and dimensional changes increase as a result 
[3]. Moreover, woods of almost the same density show 
substantially differences in stiffness and shrinkage [4, 5]. 
We must be able to evaluate quantitatively not only the 
amount of cell walls but also their distribution patterns.

The Fourier transform analysis of images introduced by 
Fujita and coworkers is a noteworthy method for assess-
ing the cell-wall distribution quantitatively [6, 7]. From 
the power spectrum that is outputted in the fast Fourier 
transform processing of the dot map of the cell centers, 
they evaluated the cell arrangements and reconstructed 
the cell shapes for various wood species [8–15]. Funda-
mentally, let {e1, e2, . . . , en} be an orthonormal basis for a 
vector space V of finite dimensions, where n is a positive 
integer. Then every f in V is uniquely a linear combination 
f =

∑

f iei with f i an element of a real number space R. 
Let Fi : V → R be the linear function that picks out the 
ith coordinate, Fi(f ) = f i ; that is, Fi is characterized by

(1)Fi(ej) = δij =

{

1 if i = j;
0 if i �= j.
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The coordinate functions F1, F2, . . . , Fn then form a 
basis for the dual space of V, denoted V* [16]. The Fou-
rier coefficients are simply the coordinate functions and 
therefore a two-dimensional image data can be identified 
with a point on Rn, denoted (f 1, f 2, . . . , f n) . This perspec-
tive plays an important role in the following discussion.

A given wood can be characterized not only by the 
anatomical features but by many other properties, such 
as wood density, mechanical properties, and chemical 
components. In other words, a wood can be defined as 
a point in Rn, an n-tuple of numbers X = (x1, x2, . . . , xn) . 
Because wood properties are more or less interrelated, 
we should evaluate inclusively how multiple characteris-
tics change in relation to the others. Fujimoto suggested 
a comprehensive method based on the distribution of 
eigenvalues to evaluate the variation of multiple wood 
characteristics [4, 5]. In this method, the n-dimensional 
data obtained from a wood sample is regarded as a state 
vector representing the physical aspects of the system. 
Given the advances of measurement technology, the 
multi-dimensional data of woods can be easily measured 
for instance from their electromagnetic spectra [17–19]. 
Although the data variables do not exhibit a one-to-one 
correspondence with the wood properties, a number of 
studies have demonstrated that such indirect information 
can provide the basis for an evaluation of various prop-
erties of wood [20–22]. The statistical model obtained 
in these studies can be regarded as a covector, that is, a 
mapping from V to R (ω: V → R) [16]. The set of all cov-
ectors on V forms a dual space V*, which has no essential 
difference except for the basis. The indirect information 
can be used to evaluate the actual variations in wood 
properties comprehensively if they exhibit this dual 
relationship.

In the context of physics [23, 24], the set of eigenvalues 
from the data matrix can be identified with the energy 
of the system and subsequently wood variations can be 
also analyzed from the perspective of thermodynam-
ics and statistical mechanics [25, 26]. Energy is the one 
of the most important physical quantities as it appears as 
a conserved quantity in a wide range of physical systems 
from thermodynamics to field quantum theory [27]. The 
evaluation of wood variations based on energy, that is, 
stochastic energetics [28], would give a completely new 
perspective on wood science.

We examined the variation in shrinkage using the set 
of eigenvalues calculated from the near-infrared (NIR) 
spectral matrix [5]. As discussed later, woods having 
almost the same density often show substantially dif-
ferent behaviors in shrinkage despite the interaction 
with water occurring only at the cell wall. The varia-
tion in shrinkage is mainly affected by two factors: the 
distribution pattern of (i) the cell walls in wood and (ii) 

the molecular structures in the cell wall [1, 3, 29]. The 
previous study revealed that the second factor is well 
explained by the eigenvalues of the NIR spectral matrix 
[5]. In the current study, the first factor, specifically, that 
which concerns the effects of the distribution of cell wall 
on shrinkage, was examined in an eigenvalue analysis. 
The spectrum obtained from the Fourier transforma-
tion of a microscopic image from a cross section of wood 
was used as the multi-dimensional data. We ensured that 
this method is independent of the sources of the multi-
dimensional data.

Experimental
Materials and shrinkage tests
Sample materials were obtained from 50-year-old Japa-
nese larch (Larix kaempferi) stands in Tottori Uni-
versity Forest located in Maniwa, Okayama. Detailed 
information about the origin and processing proce-
dures of the sample was described in our previous arti-
cle [5]. In brief, a total of 155 samples of dimensions of 
20  mm × 20  mm × 20  mm were cut from 20 trees and 
were used in measuring dimensional changes. The spe-
cific characteristics of the dimensional changes evaluated 
were the tangential shrinkage of samples under green to 
oven-dry conditions, because results obtained from the 
following analyses were similar in any structural direc-
tion of wood. All testing procedures employed conform 
with the standards set in JIS-Z-2101:1994 [30]. Wood 
densities were measured under green, air-dry, and oven-
dry conditions.

The scatter plot depicting the relationship between 
shrinkage and wood density under an air-dry condi-
tion (Fig.  1) shows a positive linear correlation, albeit 
very weak (correlation coefficient = 0.69). About twice 
the difference was found even in samples having similar 
wood densities (0.585 ± 0.015 g/cm3, gray rectangle area). 
Twenty samples with similar wood density were then 
divided into two groups; the first was the low shrinkage 
group, ranging from 6.20 to 8.90% (mean 7.77%), and the 
other was the high shrinkage group, ranging from 11.10 
to 12.15% (mean 11.52%). Both groups had ten samples.

From the optical micrographs of the transverse sec-
tion, the transition from earlywood to latewood gradually 
changed for the low-shrinkage samples; the high-shrink-
age samples showed a narrow ring width and a distinct 
transition from earlywood to latewood. Obvious differ-
ences seen in the distribution pattern of cell walls were 
examined quantitatively and are described next.

Image analysis
Transverse sections, 20 μm thick, were cut from one rep-
resentative sample in both low and high-shrinkage groups 
using a sliding microtome. The sections were stained in 
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aqueous safranin and mounted permanently. Image data 
were captured using a digital camera with a light micro-
scope attached. Consecutive images with field-of-view 
sizes of 0.5 (T) × 0.4 (R) mm (2560 × 1920 pixels) were 
collected for four radial rows and a total of 100 images 
per section were obtained. The procedures employed 
in the image analysis (see Fig.  2) involved loading each 
image into a computer and applying a histogram-based 
grayscale binarization (Steps 1 and 2). Then, the matrix 
data of the binarized image was transformed to a vector 
data (Step 3). A rectangle-pulse signal modeling a Pois-
son process was chosen to represent the regularity of the 
cell wall or lumen. To reduce the computation time, the 
vector transformation was conducted over a limited area 
of 500 × 500 pixels located in the center of the image. The 
length of this vector is then 250,000. Finally, the power 
spectral density was estimated from the spectrum com-
puted using the fast Fourier transform (Step 4). Image 
acquisition and data processing were performed using 
the ‘imager’ [31] and the ‘tuneR’ [32] packages in R ver. 
3.3.2.

Eigenvalue analysis
The data analysis procedure is the same as that given in 
our previous reports [4, 5] except for the origin of the 
spectrum. With the 100 images obtained per section, 
we conducted an eigenvalue analysis using matrix data 

comprising the 100 power spectra. In brief, an eigen-
value decomposition was applied to the variance–covari-
ance matrix C calculated from the spectral matrix A 
(C = ATA). The eigenvalue problem is solved by maxi-
mizing the quadratic form uT

i Cui with respect to eigen-
vector ui (i = 1,. . . , N) [23, 24]. The set of eigenvalues 
{E1,E2, . . . ,EN } is regarded as belonging to an energy 
function, termed the Hamiltonian H. Once H is defined, a 
distribution function Z can be calculated:

where β is called the inverse temperature. Thermody-
namic functions such as the Helmholtz free energy and 
entropy can be obtained from the distribution function. 
With these thermodynamic functions, we compared the 
distribution patterns of the cell wall for the low and high-
shrinkage wood groups.

Results and discussion
Spectral variation
Figure 3a depicts an example of typical power spectra, 
an enlargement of which is shown in Fig.  2; the blue 
and red lines indicate the spectra from earlywood and 
latewood, respectively. The intensities in the spectrum 
of the earlywood are slightly higher than those for 
latewood. Both spectra repeat every 500  Hz, probably 
because of the transformation from matrix to vector. 

(2)Z =

N
∑

i=1

exp(− βEi),

Fig. 1  Relationship between shrinkage and wood density under 
air-dry conditions. Black line indicates the regression line. Samplings 
of similar wood density were performed from within gray rectangle 
area. Typical optical micrographs of the transverse section are 
depicted for the low and high-shrinkage samples. Scale bars 
represent 5 mm

Fig. 2  Procedure of the image analysis for the distribution pattern of 
cell walls
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For this reason, the following analyses are focused on 
the restricted frequency interval from 1 to 500 Hz with 
the aim to reduce the computational complexity. In 
normal spectrum analysis, the peak intensity of a spe-
cific frequency is often of most interest. In this study, 
however, we examined the spectral variations using 
statistical mechanics and therefore do not consider the 
spectral variation as individual variables (that is, fre-
quency) separately but rather as a whole for the wood 
system. Statistical mechanics deals with physical prop-
erties of systems that comprise an enormous number of 
microscopic elements, that is, many-body systems [33–
35]. Here, we consider the spectral variables abstractly 
as microscopic elements comprising the wood system.

Additionally, we assumed the physical system to be 
in an equilibrium state that conforms to the require-
ments of equilibrium statistical physics. In this study, 
the power spectrum is regarded as a state vector repre-
senting the physical state of a given wood. To attain the 
equilibrium state, many spectra that show an almost 
similar pattern in variation are required. Prior to the 
eigenvalue analyses, 500 samples were simulated in 
accordance with the bootstrap resampling procedure 
[36]. The intensity at each frequency is assumed to fol-
low an empirical distribution of the measured data, and 
the mean of the bootstrap samples was obtained by 
repeating the procedure 500 times using the ‘simple-
boot’ package [37]. Simulations were performed with 
the images of earlywood and latewood. Consequently, 
spectral matrices corresponding to the earlywood and 
latewood data, each with 500 rows and 500 columns, 
were obtained for both low and high-shrinkage samples 
(Fig. 3b) and were used for the following analyses. The 
elements of the variance–covariance matrix calculated 

from this 500 × 500 random matrices were assumed to 
obey a Gaussian orthogonal ensemble [24].

Eigenvalue distribution
From the distributions of the (energy) eigenvalues cal-
culated from the variance–covariance matrix C for low-
shrinkage sample (Fig. 4), the eigenvalues from latewood 
images (panel (b)) are widely distributed compared with 
those from earlywood images (panel (a)). The same 
results were found for high-shrinkage sample (Fig. 4c, d). 
These results indicate that the spectral matrix of the late-
wood images varied in a more orderly manner than that 
of the earlywood images. Indeed, the images of latewood 
were mostly occupied by cell walls and therefore there is 
no distinctive variation in the distribution of the cell wall.

Using the distribution function Z (Eq. 2) as a normali-
zation factor, the probability that the system of interest is 
in the energy eigenstate Ei was found to be

Fig. 3  a Power spectra associated with earlywood (blue line) and latewood (red line). b Simulated samples generated from the mean of the 
bootstrap samples

Fig. 4  Distribution of eigenvalues calculated from the spectra of 
low-shrinkage sample (left column) and high-shrinkage sample (right 
column). a, c Correspond to the images of earlywood and b, d to 
those of latewood
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Let β be a constant. The distribution of probability pi 
corresponding to each energy eigenstate (Fig.  5) show 
that for low (panel (a)) and high (panel (b)) shrinkage 
samples, pi of earlywood images (blue lines) has a flat 
distribution compared with that of latewood images 
(red lines). This suggests that earlywood displays a more 
disordered pattern of cell wall distribution compared 
with latewood. As evident from the optical micrographs 
(Fig.  1), the low-shrinkage samples contain more early-
wood area than the high-shrinkage samples; moreover, 
the former have a more disordered cellular structure than 
the latter.

Stochastic energetics for the distribution of cell wall
The thermodynamic functions were calculated using the 
set of eigenvalues {E1,E2, . . . ,EN } to assess the distribu-
tion pattern of cell wall quantitatively. The Helmholtz 
free energy F is given by the logarithm of the distribution 
function,

The Helmholtz free energy is an important quantity in 
the sense that it contains all the information of the physi-
cal properties of a system. Although both Z and F depend 
on β, the first eigenvalue E1 of the matrix C can be evalu-
ated from F in the limit β → ∞ [23],

As evident in the eigenvalue distribution (Fig.  4), for 
low and high-shrinkage samples, the first eigenvalues, 
that is, Helmholtz free energy, associated with the late-
wood images were higher than those of the earlywood 
images. The high-shrinkage sample moreover featured a 

(3)pi =
1

Z
exp(− βEi), (i = 1, . . . ,N ).

(4)F =
1

β
log Z.

(5)E1 = 2 lim
β→∞

F(β|C).

large Helmholtz free energy because of the high posses-
sion of latewood. This result is associated with the dis-
tribution pattern of cell walls evident in Fig.  1 and was 
consistent with our previous understanding that tangen-
tial shrinkage and swelling are largely controlled by the 
changes in the latewood [1]. Because large dimensional 
changes seem to involve a lot of work arising from the 
stress during shrinkage or swelling, the result is also 
consistent with the actual physical picture. This study 
dealt with woods having almost the same wood density. 
Hence, the eigenvalues would carry a lot of information 
concerning various factors other than wood density that 
influence shrinkage and provide a comprehensive under-
standing concerning dimensional changes in wood.

We can next calculate the Shannon entropy S from the 
results of the probability pi,

Figure  6 shows the variation of entropy S with β. 
The domain of β was set so that the entropy could 
be calculated. For both low and high-shrinkage sam-
ples, the earlywood images showed larger entropy S 
than the latewood images. Therefore, the low-shrink-
age sample displayed a large entropy because of the 
high possession of earlywood. These results coincide 
with the optical micrographs (Fig.  1); specifically, the 
gradual transition from earlywood to latewood for 
low-shrinkage samples may be interpreted as a con-
sequence of the distribution of the cell wall being 
more homogeneous. High-shrinkage samples show 
low entropy, where the distribution of the cell walls is 
a well-ordered repetitive pattern from earlywood to 
latewood. This can be explained from the distribution 
of brightness in the optical micrographs of the trans-
verse section (Fig. 1). Figure 7 shows Histograms of the 

(6)S = −

N
∑

i=1

pi log pi.

Fig. 5  Probability distributions corresponding to each energy 
eigenstate calculated from the spectra of low-shrinkage sample (a) 
and high-shrinkage sample (b). Blue and red lines indicate earlywood 
and latewood images, respectively

Fig. 6  Variation of the Shannon entropy with inverse temperature 
calculated from the spectra of the low-shrinkage sample (a) and 
high-shrinkage sample (b). Blue and red lines indicate earlywood and 
latewood images, respectively
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luminous intensity of the grayscale micrographs for 
the low-shrinkage sample (a) and high-shrinkage sam-
ple (b). In general, the distribution of brightness shows 
the bimodality due to the contrast of cell walls and 
lumen. Sharpness of the peaks were obviously different 
between the samples. Two peaks were clearly identi-
fied in the micrographs of high-shrinkage sample but 
were spread in the low-shrinkage sample.

The physical approaches proposed in this study is 
suitable for evaluating phenomena where many fac-
tors contribute to a system cooperatively rather than 
individually [33–35]. As mentioned above, a wood may 
be regarded as a physical system with multiple degrees 
of freedom. Based on this suggestion, it seems that the 
spectral variables are like generalized coordinates in 
analytical mechanics [33]. That is, we consider the var-
iation of data points as if they were the movements of 
a point particle in configuration space. Actually, in the 
Hamiltonian Monte Carlo method in simulating the 
posterior distribution, we consider the model parame-
ter space of the probability distribution to be a config-
uration space and evaluate the potential energy using 
the logarithm posterior distribution [38]. Although the 
power spectra of image data were used in this study, 
the data from wood can be arbitrarily selected as long 
as they are multi-dimensional and spectral-like in this 
way of thinking. The proposed concept for considering 
the wood variation thus has very widely applicability.

Conclusions
Depending on the magnitude of the dimensional 
changes, obvious differences were found in the dis-
tribution patterns of cell walls in wood samples. The 
set of eigenvalues representing the energy states of 
the system can provide an evaluation of the distribu-
tion of cell walls in wood. The dimensional changes in 
wood are complex phenomena involving many factors. 
The approaches proposed is useful for evaluating phe-
nomena in which many factors contribute to a system 
cooperatively rather than individually, and as it has 
no dependence on data type it has wide applicability. 
Because the idea is supported by universal theories of 
various physics fields, wood variations should be dis-
cussed from a more general perspective.
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