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Abstract 

Moisture sorption has a significant impact on the performance of heat-treated wood. In order to better characterize 
moisture sorption of heat-treated wood, a method for rapid determination of moisture content (MC) of nanogram-
scaled heat-treated wood is proposed in this work. During moisture adsorption process, micro-Fourier transform 
infrared (FTIR) spectra of heat-treated wood were recorded. Spectral analysis was applied to these measured spectra, 
and then moisture adsorption sites and spectral ranges affected by moisture sorption were identified. Meanwhile, 
moisture contents (MCs) of heat-treated wood at various relative humidity (RH) levels were measured by using 
dynamic vapor sorption (DVS) setup. Based on these spectral ranges and MCs, a quantitative forecasting model was 
established using partial least-square regression (PLSR). Furthermore, the developed forecasting model was applied 
to acquire moisture sorption isotherm of heat-treated wood, in which a very positive correlation between predicted 
and measured MCs was observed. It was confirmed that this method was effective for rapid detection of MC of 
nanogram-scaled heat-treated wood which had unique advantages of rapid analysis (second level) and less sample 
consumption (nanogram level).
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Introduction
Wood is a green and renewable building material, and 
it has been widely used in construction industry, furni-
ture production and pulping and papermaking industry 
[1–3]. Heat treatment is considered to be an effective 
technique for wood physical modification, while mois-
ture sorption has a significant impact on the performance 
of heat-treated wood [4–7]. Hence, a deeper research 
on moisture sorption of heat-treated wood is extremely 
important.

Moisture sorption, an important property of heat-
treated wood, has been studied from various aspects 
[8–10]. Moisture content (MC) is one of the key aspects, 
which is mainly measured by gravimetric methods, 
especially dynamic vapor sorption (DVS). For example, 
Metsä-Kortelainen et al. [11] confirmed that heat-treated 
Scots pine (Pinus sylvestris) and Norway spruce (Picea 
abies) have lower MCs than those untreated samples 
whose dimensions were 22 × 65 × 150 mm3. Besides, Hill 
et al. [12] employed the DVS apparatus to acquire MCs of 
heat-treated Scots pine (Pinus sylvestris L.) in the relative 
humidity (RH) range from 0 to 95%. Further, using DVS 
apparatus, the sorption isotherms of other heat-treated 
wood including acacia (Acacia mangium) [13], sesen-
dok (Endospermum malaccense) [14], scots pine (Pinus 
sylvestris L.) [15–17] and Eucalyptus pellita [18] were 
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determined. Although the results are promising, DVS 
technique is blocked in certain problems, such as sam-
ple consumption (milligram level) and experiment time 
(minute level).

Many spectroscopic methods such as near-infrared 
spectroscopy [19, 20], Fourier transform infrared spec-
troscopy (FTIR) [21–23] and Raman spectroscopy [24] 
have been employed to study moisture sorption of heat-
treated wood at molecular level. For example, Esteves 
et al. [25] demonstrated that the near-infrared spectros-
copy has enough ability to predict MC of heat-treated 
pine (Pinus pinaster) and eucalypt (Eucalyptus globulus). 
Boonstra et  al. [26] took advantage of FTIR spectros-
copy to study the moisture sorption, and showed that the 
decrease in MC of heat-treated wood was attributed to 
the cross-linking of lignin and the reducing of OH group. 
Guo et al. [24] examined moisture sorption using Raman 
spectroscopy. Among these spectroscopic methods, 
FTIR spectroscopy has been widely applied, for it has 
many merits, for example: high spectral quality [27, 28], 
fast data collection speed [29–32], higher signal-to-noise 
ratio [33, 34], high sensitivity for the detection of mois-
ture [35]. Moreover, micro-FTIR spectroscopy is a supe-
rior analytical technique for investigating micron-sized 
sample [36]. Through the use of a light microscope, an 
infrared spectrophotometer, a mercury cadmium tellu-
ride detector, and an extensive on-line software library of 
organic chemical spectra, this new technique is capable 
of identifying micron-scaled sample.

Considering that micro-FTIR spectroscopy has the 
ability to study micron-sized sample [37, 38], in this 
study, we developed a method for rapid detection of 
MC of nanogram-scaled heat-treated wood. First, we 
collected micro-FTIR spectra of nanogram-scaled heat-
treated wood during moisture adsorption process. Sec-
ond, these collected spectra were used to determine 

moisture sorption sites and spectral ranges correlated 
with moisture sorption. Third, on account of these 
determined spectral ranges and measured MCs, the 
micro-FTIR forecasting model was generated. Finally, 
the developed forecasting model was applied to acquire 
moisture sorption isotherm of nanogram-scaled heat-
treated wood.

Materials and methods
Sample preparation
Wood specimens (dimensions 100 × 30 × 10  mm in 
length, width, and thickness) were collected from straight 
stem of Ginkgo biloba L. (Ginkgoaceae). Then heat 
treatment was used for these wood specimens in elec-
tric vacuum drying oven under controlled condition of 
180 ± 1  °C. This heat treatment lasted 4  h. From these 
heat-treated wood specimens, transverse sections were 
prepared without embedding and any chemical treat-
ment. These sections, 5  mm × 5  mm × 10  μm, were cut 
using a manual rotary microtome (Leica RM2135). Prior 
to the spectral measurement, the transverse section of 
heat-treated wood specimen was dried at 102 ± 3  °C in 
the oven for 2 h.

Experimental setup for measurement of micro‑FTIR 
spectroscopy
Figure  1a shows an experimental setup for measure-
ment of micro-FTIR spectroscopy. The main section of 
the experimental setup was a spectrometer (Nicolet IN 
10). This spectrometer included one microscope which 
provided a new function for selecting observation area. 
During the spectral measurement, one observation area 
(30  μm by 30  μm) was randomly selected in the trans-
verse section of heat-treated wood specimen, in which 
small quantities (~ 1  ng) of heat-treated wood was pre-
sent. The micro-FTIR spectroscopy in the wavenumber 

Fig. 1  Experimental setup for measurement of micro-FTIR spectroscopy
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range from 720 to 4000 cm−1 was recorded with 4 cm−1 
resolution; 32 scans were collected. Meanwhile, the 
spectral data were recorded at a constant temperature 
of 25 °C. Figure 1b shows the sample cell. One prepared 
transverse section was placed on the base of sample cell 
which was made of ZnSe plate. Then this sample cell was 
mounted on the stage of the spectrometer. Meanwhile, 
through this sample cell, nitrogen gas with specific RH 
was circulated.

Before the spectral measurement, a kinetic spectros-
copy test was conducted to calculate the balance time. 
Figure 2 shows typical changes of the set RH, the real RH, 
temperature and peak height of real-time spectrum with 
time. When the set RH was changed to a new value (such 
as 5 and 10%), the latency of 3–4 min appeared. During 
the latency period, the real RH was more and more close 
to the set RH, and then arrived at stabilization. Mean-
while, 15 min later the real-time spectrum nearly did not 
change (peak height of the main peak at 3352 cm−1 asso-
ciated with moisture sorption was advocated to detect 
spectral change). Based on these results, 60 min were set 
as the balance time.

Determination of MC using DVS apparatus
Moisture content was measured using DVS apparatus 
(DVS AdvantagePlus). First, a heat-treated wood sam-
ple was put on the sample tray which was hung on the 
microbalance which was situated in a thermostatically 
controlled cabinet. The apparatus recorded sample mass 
at the set RH (adsorption): 0, 5, 10, 15, 20, 25, 30, 35, 40, 
45, 50, 55, 60, 65, 70, 75, 80, 85, 90 and 95%, at a tempera-
ture of 25 °C and in the reverse sequence for the desorp-
tion isotherm. Meanwhile, every set RH was maintained 
for enough time until the sample mass of the heat-treated 
wood specimen altered less than 0.002% per minute dur-
ing 10 min.

Moisture content was calculated using the following 
formula:

where md was dry sample mass and m is real-time sample 
mass.

Figure  3 shows typical changes of MC and RH with 
time. When the set RH was changed to the next value (for 
example, 5 and 10%), a time delay of 4–10 min appeared. 
During the latency period, the real RH got close to the 
set RH, and then arrived at stabilization afterward. 
Therefore, MC would increase to a steady value at the set 
RH which was recorded as reference value. It should be 
noticed that three replicates were exposed and each MC 
collected as reference value was mean of three replicates.

Spectral data processing
Acquiring difference spectrum
To further analyze the moisture sorption of heat-treated 
wood qualitatively and quantitatively, a difference spec-
trum technique was introduced.

Establishment of the forecasting model based on micro‑FTIR 
spectra
A micro-FTIR forecasting model was generated using TQ 
Analyst™ qualitative and quantitative analysis software, 
one of the OMINIC software suites. In description table, 
quantitative analysis was set to “partial least squares”. In 
pathlength table, pathlength type was set to “constant”. In 
components table, component was set to “moisture con-
tent” whose maximum and minimum values were both 
entered, and these two values were acquired using DVS 
apparatus. In standards table, sample spectra collected 
at 35 different relative humidities were introduced. Four-
fifths of sample spectra measured at 28 different relative 

(1)MC =

m−md

md

× 100,

Fig. 2  Typical changes of the set RH, the real RH, temperature and 
peak height of real-time spectrum with time Fig. 3  Typical changes of MC and RH vs. time
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humidities with six replicates (i.e., 168 spectra) were 
assigned to the calibration set, and the remaining sam-
ple spectra acquired at seven different relative humidi-
ties with six replicates (i.e., 42 spectra) were allocated 
to the validation set. In spectra table, no smoothing and 
multipoint baseline correction were programmed. In 
regions table, spectral range was adjusted according to 
the qualitative description of heat-treated wood moisture 
sorption. When these parameters were enabled, the TQ 
Analyst™ qualitative and quantitative analysis software 
program was run, and one forecasting model was estab-
lished. Model performance was estimated using the cor-
relation of determination (R2), root-mean-square error of 
cross-validation (RMSECV) and root-mean-square error 
of prediction (RMSEP).

Results and discussion
Qualitatively analyzing moisture sorption in heat‑treated 
wood
Figure  4 shows heat-treated wood spectra collected at 
the moisture adsorption process. The development of 
micro-FTIR spectra could be seen over a range of MC 
from 0 to 15.0% in this figure. At the MC of 15.0%, the 
main band at 3358  cm−1 assigned to O–H stretching 
vibration increased, showing the OH group was mois-
ture adsorption sites of heat-treated wood. The band at 
1736  cm−1 was assigned to C=O stretching vibration 
of carboxylic acid, the 1600 cm−1 band belonged to the 
aromatic skeletal vibration plus the C=O stretching 
vibration, and the band at 1158 cm−1 was attributed to 
the glucosidic C–O–C vibration. For comparison, heat-
treated wood spectrum measured at 0% MC was also 
displayed, in which these three bands appeared at 1739, 
1604, and 1160  cm−1. When RH increased, the band 

positions of these three bands exhibited continuous 
red shifts. These peak shifts indicated the carbonyl and 
C–O groups were moisture adsorption sites of heat-
treated wood. What’s more, it was confirmed that two 
micro-FTIR spectral ranges correlated with moisture 
sorption were 3700–3100 and 1780–1700 cm−1.

Figure  5 presents difference spectra at various MC 
levels during the moisture adsorption process. The 
broad envelope range of 3700–2800  cm−1 contain-
ing many component bands was observed to rise 
which resulted from moisture sorption. Further, the 
first spectral range correlated with moisture sorption 
was precisely identified as from 3700 to 2800  cm−1. 
Meanwhile, the 1755  cm−1 band belonged to free car-
bonyl group decreased, while the 1725  cm−1 band 
was assigned to hydrogen bonded carbonyl group had 
reverse trend. Meanwhile, the band around 1642 cm−1 
was assigned to H–O–H bending vibration. Therefore, 
second spectral range was precisely identified as from 
1770 to 1580 cm−1. Moreover, with an increase of RH, 
the 1171 cm−1 band was shown to decrease, while the 
1142  cm−1 band was found to rise. The same reflec-
tions were happened in two bands located at 1171 and 
1142  cm−1. This further suggested the third spectral 
range correlated with moisture sorption could be pre-
cisely confirmed as from 1180 to 1140 cm−1.

Further, the variation in the peak height for three 
peaks impacted by water sorption vs. MC is shown 
in Fig.  6. Clearly the variation for three peaks was 
diverse, suggesting that water molecule was absorbed 
by all these sorption sites. However, none of these three 
peaks could predict moisture sorption isotherm. There-
fore, a method for determination of MC of heat-treated 
wood is needed urgently.

Fig. 4  Heat-treated wood spectra collected during the moisture 
adsorption process Fig. 5  Difference spectra collected in the MC range from 1.5 to 15.0%
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Quantitative detection of MC of heat‑treated wood
As shown previously, DVS has offered vast amounts of 
moisture sorption isotherms [39–41]. Hence, this tech-
nique was introduced to collect MCs as measured values. 
Figure 7 shows the experimental sorption isotherm. This 

isotherm curve presented a typical sigmoidal shape com-
monly observed for other lignocellulosic materials [42].

In order to establish a method for rapid determination 
of MC, the forecasting model based on micro-FTIR spec-
troscopy ought to be determined firstly. As mentioned 
earlier, spectral range was an important parameter for 
the forecasting model. Three spectral ranges of 3700–
2800, 1770–1580, and 1180–1140  cm−1 correlated with 
moisture sorption were proposed as Case A. Further, 
the widened and narrowed spectral ranges were intro-
duced separately as Case B and C (Case B: 3700–2800, 
2800–2700, 1770–1580, and 1180–1140  cm−1; Case C: 
3700–3000, 1770–1580, and 1180–1140  cm−1). In all 
three cases, the micro-FTIR forecasting model was gen-
erated and corresponding parameters such as RESECV, 
RESEP, and R2 could be acquired in TQ Analyst™ soft-
ware (as shown in Table  1). The established forecasting 
model in Case A had highest forecast accuracy, for it pos-
sessed highest values of R2 as well as the lowest values of 
RMSEP and RMSECV. What’s more, this model made 
use of the whole spectral ranges correlated with moisture 
sorption, and the change of spectral range (increase and 
decrease) could decrease the accuracy of the established 
forecasting model in Case B and C.

Based on the established forecasting model, MCs of 
heat-treated wood were predicted. Moreover, measured 
values using DVS setup are displayed in Fig.  8. During 
the moisture adsorption process, the predicted MCs were 
much closed to the measured values (relative error was 
lower than 3%). Results indicated that this method for 
rapid detection of MC in nanogram-scaled heat-treated 
wood using micro-FTIR spectroscopy and partial least-
squares regression was effective and efficient. Compared 
to the traditional DVS, it has unique advantages of rapid 
analysis (second level) and less sample consumption 
(nanogram level).

Conclusion
One method for rapid determination of moisture con-
tent of nanogram-scaled heat-treated wood was pro-
posed here. Micro-FTIR spectra were measured during 
the moisture adsorption process. An analysis of these 
spectra confirmed that hydroxyl and carbonyl groups 
were moisture sorption sites of heat-treated wood. 
Moreover, three spectral ranges, such as 3700–2800, 
1770–1580, and 1180–1140  cm−1 were identified that 
related to moisture sorption. Based on these three 
spectral ranges and referential values, a quantitative 
forecasting model was built using PLSR. Further, the 
developed forecasting model was applied to acquire 
moisture sorption isotherm of heat-treated wood, in 
which a very positive correlation between the forecasts 
and recorded values. It was confirmed that this method 

Fig. 6  The variation in the peak height for three peaks impacted by 
moisture sorption vs. MC. Quadrate dot: the 3602 cm−1 band. Circular 
dot: the 3149 cm−1 band. Triangle dot: the 1642 cm−1 band

Fig. 7  a Change in moisture content of heat-treated wood with 
the varying RH levels over the time profile in the isotherm run. b 
Equilibrium moisture content of heat-treated wood over the full set 
RH range in the adsorption process
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for rapid detection of moisture content in nanogram-
scaled heat-treated wood was effective which had 
unique advantages of rapid analysis (second level) and 
less sample consumption (nanogram level).

Abbreviations
FTIR: Fourier transform infrared; MCs: moisture contents; RH: relative humid-
ity; DVS: dynamic vapor sorption; PLSR: partial least-square regression; MC: 
moisture content; RMSECV: root-mean-square error of cross-validation; RMSEP: 
root-mean-square error of prediction.
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