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Classification of acoustic emission signals 
in wood damage and fracture process based 
on empirical mode decomposition, discrete 
wavelet transform methods, and selected 
features
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Abstract 

The nondestructive testing technology of generated acoustic emission (AE) signals for wood is of great significance 
for the evaluation of internal damages of wood. To achieve more accurate and adaptive evaluation, an AE signals 
classification method combining the empirical mode decomposition (EMD), discrete wavelet transform (DWT), and 
linear discriminant analysis (LDA) classifier is proposed. Five features (entropy, crest factor, pulse factor, margin factor, 
waveform factor) are selected for classification because they are more sensitive to the uncertainty, complexity, and 
non-linearity of AE signals generated during wood fracture. The three-point bending load damage experiment was 
implemented on sample wood of beech and Pinus sylvestris to generate original AE signals. Evaluation indexes (preci-
sion, accuracy, recall, F1-score) were adopted to assess the classification model. The results show that the ensemble 
classification accuracies of two tree species reach 94.58% and 90.58%, respectively. Moreover, compared with the 
results of the original AE signal, the accuracy of the AE signal processed by the methods proposed is increased by 
27.68%. It indicates that the EMD and DWT signal processing methods and selected features improve the classifica-
tion accuracy, and this automatic classification model has good AE signal recognition performance.
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Introduction
The wood is a natural composite material with a porous, 
layered structure. When the wood is locally deformed 
and fractured, it releases energy in the form of stress 
waves, which generate a large number of acoustic emis-
sion (AE) signals. Although the way of wood damage is 
very complicated, internal damage can be roughly divided 
into several basic forms based on microscopic structural 
change behavior: cell wall buckling and collapse, cell wall 
interface damage and spallation, formation and extension 

of the microcracks damage area, cell wall fracture [1]. 
Moreover, any type of damage and fracture in the devel-
opment of its generation will have recognizable features 
of the AE signal.

As the only active dynamic nondestructive test-
ing method, acoustic emission technology (AET) has 
been widely used in metal, composite materials, mag-
netic materials, and other materials defect detection. 
The beginning of modern AET was in Germany in the 
early 1950s [2]. The researches on AE in China began in 
the 1970s, and it was not until the early 1980s that AET 
began to be applied in engineering practice. Reiterer 
et al. [3] used the method of combining splitting test and 
AE monitoring to study the internal stress change and 
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fracture process of cork and hardwood I type fracture. 
Choi et  al. [4] studied the influence of fiber orientation 
of various composite laminates on AE characteristics. 
They divided AE signals into different types through 
short-time Fourier transform (STFT) and obtained the 
characteristics of different types of signals. Lamy et al. [5] 
studied the failure process of Douglas fir under mono-
tonic loading by comparing three experimental methods, 
force–displacement curve analysis, AE measurement, 
and digital image acquisition. Fang et  al. [6] proposed 
an improved segmenting cubic Hermite interpolation 
empirical mode decomposition (EMD) algorithm, which 
was used for analyzing the characteristics of wood AE 
signals, and combined with the instantaneous frequency 
judgment and AE events statistics. Barile et al. [7] char-
acterized the damage propagation of composite materials 
by AET. They utilized wavelet packet transform (WPT) 
to decompose the signal-based data into different levels, 
and the results could identify the characteristics of differ-
ent types of damage signals. Li et al. [8] studied the influ-
ence of moisture content on AE signals in the process of 
wood damage, and evaluated the extent of the damage. 
They used wavelet transform to filter the noise from the 
original AE signals, and divided the de-noised AE sig-
nals into deformation AE (DAE) and fracture AE (FAE) 
signals to the distribution characteristics of frequency. 
according

Recently, the artificial intelligence method has been 
applied in the detection of wood damage defects. Jor-
dan et al. [9] modified the initial ultrasonic signal based 
on the elastic anisotropy of the transmission medium, 
and then used the neural network system to classify the 
characteristic signals formed when ultrasonic waves 
passed through different kinds of wood. Castellani et al. 
[10] studied the design and training of a multilayer per-
ceptron classifier to identify wood veneer defects based 
on the statistical features of sub-images of wood. In 
their study, the evolutionary artificial neural network 
generation and training (ANNGAT) algorithm was 
adopted. Compared to manual methods, its complete 
automation reduces the work of many complex designs. 
Facciotto et  al. [11] used spectrogram analysis tech-
niques to distinguish between different AE events. And 
train on different spectral information, which signal 
sources can be classified and linked to specific emis-
sion types with a high level of accuracy. Tha et al. [12] 
proposed a learning method to detect wood features. 
It automatically classified defects from wood images 
using a laser scanner through the deep convolutional 
neural network (DCNN). The results showed that the 
overall accuracy of the training model is 99.13%. Wang 
et  al. [13] proposed an AE signal recognition method 

based on spectrum and acoustic features. This method 
combined a convolutional neural network (CNN) net-
work with a bidirectional long short term memory 
(BiLSTM) network to extract features. And then, Soft-
max was used to realize the recognition of AE signals. 
Fathi et  al. [14] introduced a machine learning-based 
model to predict the elastic modulus (MOE) and frac-
ture modulus (MOR) of wood with different moisture 
content using guided wave propagation method. The 
results showed that the accuracy obtained is higher 
than that obtained by conventional ultrasonic method. 
VS et  al. [15] provided a fast and nondestructive 
method for wood identification using a stoichiometric 
method of Attenuated total reflection Fourier trans-
form infrared (ATR-FTIR) analysis. It used multivariate 
statistical analysis, including hierarchical cluster analy-
sis (HCA) and principal component analysis (PCA) to 
identify wood samples.

Most of the above studies used STFT, EMD, WPT, 
and other processing on AE signals to identify different 
damage signal characteristics or implemented a neural 
network system to train and identify characteristics of 
different types of wood (spectrum, MOE, MOR, etc.). 
Because the signals generated in the process of pressur-
ized fracture of wood have the characteristics of uncer-
tainty, complexity, and non-linear, and time-domain 
characteristic parameters such as signal entropy, crest 
factor, pulse factor, margin factor, and waveform fac-
tor can sensitively reflect the changes of a waveform, so 
they can be used as a characteristic index to measure 
the uncertainty of signal state distribution and signal 
redundancy. Due to its adaptive nature, the EMD algo-
rithm is suitable for processing complex AE signals. 
Based on the concept of wavelet, the discrete wavelet 
transform (DWT) discretizes the continuous wavelet. 
DWT has the characteristics of non-redundant decom-
position, and can strictly distinguish the frequency 
band of AE signals to fully show the time–frequency 
characteristics of damage, which improves the calcu-
lation speed of various data. The linear discriminant 
analysis (LDA) algorithm is a classic supervised learn-
ing algorithm, which can be used not only to reduce the 
dimension of data, but also as a classifier for predic-
tive analysis. Therefore, in this study, firstly the EMD 
is employed to process and reconstruct the AE signals 
generated during the three-point bending load damage 
process of wood, and then features are extracted from 
reconstructed signals with DWT, and finally the LDA 
method is used to train and test these features, trying 
to automatically identify or distinguish wood damage 
and fracture states in different periods based on differ-
ent acoustic emission characteristics.



Page 3 of 13Zhang et al. J Wood Sci           (2021) 67:59 	

Materials and methods
Beech and Pinus sylvestris with no defect on the surface 
and stable moisture content of about 11% under air-
dried condition was selected as the experimental mate-
rial. The sample size was 800  mm (length) × 60  mm 
(width) × 30  mm (thickness). The experimental equip-
ment in this study was: (1) NI USB-6366 high-speed 
acquisition card (National Instruments in US); (2) Lab-
VIEW software to build a 3-channel AE signal acquisi-
tion system; (3) UTM5105 universal mechanical testing 
machine (the maximum test force is 100 kN, the power 
is 1.5 kW, from Shenzhen Sisheng Technology Co., Ltd 
in China); (4) SR 150 N single-ended resonant acoustic 
emission sensor (the signal bandwidth is 25–200  kHz, 
SR 150  N from Beijing Soundwel Technology Co., 
Ltd in China); (5) a 40  dB gain preamplifier (Beijing 
Soundwel Technology Co., Ltd in China) with a maxi-
mum sampling frequency of 2 MHz per channel and an 
output voltage range of ± 5 V.

In this study, three-point bending method was uti-
lized to compress the samples laterally at a velocity of 
1  mm/min with a span of 200  mm. Three AE sensors 
are arranged on both sides of the support. In order to 
avoid interference of signal reception between sen-
sors caused by too close distance, the distance of 
each two sensors is set as 300  mm. The signal source 
P is arranged between S1 and S2, and the distance to 
the two sensors is 150  mm, and the distance to S3 is 
450  mm. The distance between the two supports and 
source P is 100  mm. The distance between S1/S3 and 
the nearest end of the sample wood is 100  mm. The 
experimental structure is illustrated in Fig.  1. And the 

sensors were coated with silica gel as a coupling agent 
to ensure more accurate signal acquisition.

Existing studies have shown [16, 17] that during the 
damage process of wood, the frequency of AE signals 
can be higher than 300 kHz. However, due to the influ-
ence of external factors, high-frequency AE signals will 
be severely attenuated. For example, according to [16, 
17], compared with the low-frequency in 60–120  kHz, 
the attenuation of the AE signal in the frequency range 
of 270–330 kHz is increased by 20–30 dB. Furthermore, 
the frequency bandwidth of the sensors used in our study 
is mainly distributed in the range of 50–200 kHz. There-
fore, the sampling frequency of AE signals in this study 
was 500 kHz. According to Shannon’s sampling theorem, 
AE signals in the range of 0–250 kHz can be theoretically 
identified. First, the sensors receive AE signals caused 
by the pressure on the sample surface and perform the 
sound–electricity transformation. Then a preamp is 
used to amplify the transformed signals. Finally, the data 
acquisition card converts the amplified signal to digi-
tal signals, and stores them in a computer. The process 
is illustrated in Fig.  2. The signals of each sensor were 
stored in a text file for subsequent research.

AE signals can be used to assess the internal frac-
ture state of the sample wood. However, the assessment 
directly based on the amplitude or energy of AE signals 
is susceptible to factors such as amplification and noise 
of the acquisition system, and cannot be adaptive. Thus, 
for a more accurate and adaptive evaluation for the wood 
damage, the original signal should is processed and ana-
lyzed, and trying to find features with higher sensitivity 
and robustness. In this study, the signal analysis workflow 
is shown in Fig. 3.

Fig. 1  Experimental structure diagram

AE signal Sensors Preamp Data 
acquisi�on card ComputerAnalog signal Amplified signal Digital signal

Fig. 2  Acquisition process of AE signal
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The hardware and software experimental environment 
of signal processing is listed in Table 1.

Signal preprocess based on EMD
EMD algorithm basics
Due to influences of the external environment, signals 
collected contain much noise. In this study, the empiri-
cal mode decomposition (EMD) method is utilized to fil-
ter interference from original signals. The EMD was first 
proposed by the American scholar Huang [18] in 1998. 
It is based on the local characteristics of the signal in the 
time-domain, which is adaptive and suitable for analyz-
ing and processing non-stationary and non-linear com-
plex signals. It can clearly distinguish the eigenmodes of 
overlapping complex data sequences, filter out the inter-
ference as needed, and extract informative signals.

Its basic principle is to decompose a discrete data sig-
nal into a collection of intrinsic mode functions (IMF) 
with different frequencies. Thus, the original signal X(t) 
can be expressed as the sum of IMFs and a residue, as 
shown in Eq. (1):

where ci is IMF, r is residue.
Then, some of the IMFs can are retained or removed 

and reconstructing the signals based on a specific mecha-
nism. Thus, the valuable information was preserved while 
removing the interference.

Signal reconstruction mechanism
As mentioned, the frequencies of the AE signal col-
lected in this study are mainly distributed in the range of 

(1)X =
n

∑

i=0

ci + r,

50–200  kHz. Moreover, AE signals have greater energy 
and more impact components. Therefore, in this study, 
we comprehensively considered the energy and instan-
taneous frequency of each signal component, as well 
as the kurtosis, and used them as the basis for signal 
reconstruction.

In signal processing, the instantaneous frequency is one 
of the most important features of a signal. It is a mono-
tone function of time, and at a given moment, a signal 
only has a unique instantaneous frequency. That restricts 
the signal in a "narrowband". Intuitively, the instantane-
ous frequency is the differential of the phase. In addi-
tion, the kurtosis reflects the numerical statistics of the 
waveform distribution characteristics. When there are 
more impact components in a signal, its kurtosis value 
increases obviously. When subjected to external forces, a 
wood’s inner wall changes while it releases energy in the 
form of stress waves, namely AE signals. Obviously, these 
AE signals contain more impact components. Further-
more, it can be believed that among the IMFs obtained by 
EMD, some of the IMFs with more impact components 
have more useful information. Correspondingly, the kur-
tosis values of these IMFs signals will be greater than that 
of others. Thus, selecting IMFs based on their kurtosis 
will help to more effectively extract useful information 
from the original signals. After a segment of the signal is 
decomposed by EMD, the kurtosis value of each IMF can 
be calculated according to Eq. (2) [19], where Ti is the ith 
IMF component kurtosis:

Feature extraction and dimension reduction
In most classification algorithms, the computational 
cost is related to the size or dimension of the data sam-
ple. Thus, it is necessary to perform feature extraction on 
signals to reduce their size or dimension while retaining 
valuable information. Feature extraction will not only 
reduce the complexity of computation but also improves 
the robustness of classification algorithms. In this study, 
except for the time–frequency features extracted by the 

(2)Ti =
1

n

n
∑

k=1

c4ik .

Signal acquisi�on Data 
segmenta�on Denoising

LDA 
classifier

model 
evalua�onApplica�on Feature 

extrac�on

Fig. 3  The processing of AE signals

Table 1  Experimental environment

Hardware environment Software environment

Memory 16 GB System Windows 10

CPU Intel (R) Core (TM) i5-10210U CPU @ 1.60 GHz (8 
CPUs), ~ 2.1 GHz

Environment Tensorflow-gpu 2.4.1

DxDiag Version 10.00.19041.0928 64 bit Unicode configuration VS2019 + Python3.8 + keras 2.4.3
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DWT algorithm, entropy and some statistical features 
related to the shape of the waveform also are extracted.

Discrete wavelet transform
Wavelet provides time-scale information of signals and 
can extract time-varying features, which makes wavelet 
transform (WT) an ideal tool for analyzing transient or 
non-stationary signals [20]. Continuous wavelet trans-
form (CWT) can be expressed as Eq. (6):

where ϕ(t) is the mother wavelet; a represents the scale 
coefficient, and it is the reciprocal of frequency; b repre-
sents the shift coefficient. The DWT is derived from the 
discretization of CWT (a, b). It can not only avoid a large 
amount of information redundancy caused by continu-
ous changes in scale and displacement, but also greatly 
save computation time while providing sufficient infor-
mation. It is a very effective time–frequency localization 
analysis method. It is calculated by:

where a and b are replaced by 2j and 2jk. The DWT can 
accurately describe the signal features by the wavelet 
basis functions of different scale transformations, and 
constantly focus on any small details of the signal.

Entropy
Entropy represents the overall information uncertainty of 
random objects in the sense of average, which is a very 
important concept in information theory. For a discrete 
random variable X, its probability space is set as [21]:

where the probability p is:

Then the average uncertainty of the whole probability 
space, namely information entropy, is defined as:

Information entropy is employed to describe the redun-
dancy of information sources. The more ordered a signal 
is, the lower the information entropy is. Conversely, the 

(3)CWT(a,b) =
1

√
|a|

∫

f (t)ϕ ×
(

t − b

a

)

dt,

(4)DWT(a,b) =
1

√
2j

∫

f (t)ϕ ×

(

t − 2jk

2j

)

dt,

(5)
[

X

P(x)

]

=
[

a1, a2, ..., an

p(a1), p(a2), ..., p(an)

]

,

0 ≤ p(ai) ≤ 1,

n
∑

i=1

p(ai) = 1.

(6)H(x) = −
q

∑

i=1

p(ai) log p(ai).

more chaotic a signal is, the higher the entropy of infor-
mation is.

Other statistical characteristics
Some time-domain characteristic parameters such as 
crest factor, pulse factor, margin factor, and waveform 
factor can sensitively reflect the change of a waveform, 
and are often used as characteristic parameters of abnor-
mal waveform detection. Let a discrete signal sequence 
X = (x1, x2 … xn), n is the signal length, and the calcula-
tion of each digital characteristic parameter is as follows 
[22].

The crest factor is the ratio of the signal peak difference 
(Xpeak) to the root mean square value (Xrms), representing 
how extreme the peaks are in a waveform. As Eq. (7):

The impulse factor is the ratio of the signal peak differ-
ence (Xpeak) to the average absolute value (Xarv). As Eq. (8)

The margin factor is the ratio of the signal peak differ-
ence (Xpeak) to the root amplitude (Xr). The root mean 
square is the arithmetic square root of the mean value of 
the sum of the squares of the signals, and the root ampli-
tude is the square of the mean value of the arithmetic 
square roots. As Eq. (9):

The waveform factor is the ratio of the root mean 
square value (Xrms) to the rectification mean value (Xarv), 
namely the ratio of the pulse factor to the crest factor. As 
Eq. (10):

Method of classification
Linear discriminant analysis
Linear discriminant analysis (LDA) [23] is widely used 
in statistics, machine learning, and pattern recognition. 
It is based on Fisher’s criterion, which is a generaliza-
tion of Fisher’s linear discriminant (FLD) method. As a 

(7)
XC =

Xpeak

Xrms
=

Xmax − Xmin
√

1
n

n
∑

i=1

x2i

.

(8)
XI =

Xpeak

Xarv
=

Xmax − Xmin

1
n

n
∑

i=1

|xi|
.

(9)
XL =

Xpeak

Xr
=

Xmax − Xmin
(

1
n

n
∑

i=1

√
|x|

)2
.

(10)XS =
Xrms

Xarv
=

√

1
n

n
∑

i=1

x2i

1
n

n
∑

i=1

|xi|
.
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supervised learning method, it can be not only used to 
reduce the dimension of data, but also used as a classi-
fier for predictive analysis. The principle of LDA is to find 
the optimal projection matrix. Its process is to carry out 
low-dimensional projection on a set of linear and divis-
ible data to make the distance between data of different 
classes as far as possible and the distance between simi-
lar data as small as possible, to achieve the standards of 
dispersion degree of minimum intra-class and maxi-
mum inter-class. Then the projection matrix is used for 
dimensionality reduction of the original data to obtain 
a low-dimensional sample set with good separability 
for subsequent classification modeling and prediction. 
Closely related to the analysis of variance and regression, 
LDA aims to represent other measurements as depend-
ent variables or linear combinations. The difference 
between them is that the former uses numerical quanti-
ties as dependent variables, while LDA uses classification 
variables.

Evaluation indicators
Indicators to evaluate the quality of the model include 
accuracy, precision, recall, F1-score, etc. But these indi-
cators are usually applicable to binary classification prob-
lems, so this paper defines precision, accuracy, recall, and 
F1-score applicable to multiple classifications. Assuming 
there are n (n > 2) classes of data, then the values of pre-
cision (P), accuracy (A), recall (R), and F1-score (F1) of 
multiple classifications are defined as follows [20]:

where i = 1,2…, n is the total number of sample catego-
ries. TP is true positive, FP is false positive, FN is true 
negative, and TN is false negative, as shown in Table2, 
that is, TP: it is predicted to be positive, and it is actually 

(11)P =

n
∑

i=1

TPi

n
∑

i=1

(TPi + FPi)

,

(12)A =

n
∑

i=1

(TPi + TNi)

n
∑

i=1

(TPi + FPi + TNi + FNi)

,

(13)R =

n
∑

i=1

TPi

n
∑

i=1

(TPi + FNi)

,

(14)F1 =
2× P × R

P + R
,

positive; TN: it is predicted to be negative, and it is actu-
ally negative; FP: it is predicted to be positive, while it is 
actually negative; FN: it is predicted to be negative, while 
it is actually positive.

Results and analysis
Beech
Original signal obtained from experiment
The duration of this experiment was 370s, and the sam-
pling frequency was 500  kHz. In order to analyze the 
relationship between stress and AE signal generation, 
the corresponding time–load curve and the scatter dis-
tribution of AE events were drawn (Fig.  4). Two mil-
liseconds was taken as a temporal window, and the 
threshold method was employed to calculate the number 
of AE events. The time–load curve shows that the load 
curve increases uniformly with the increasing stress and 
reaches a maximum value at about 204th second. Before 
this time, the number of AE events increased sharply 
only in a few time periods. After this time, the number of 
AE events has increased dramatically, and the load curve 
decreases sharply, indicating that the sample wood frac-
tures at this moment. Then, the curve decreases gradu-
ally at a slower rate, and the number of AE events also 
decreases along with it. By observing the curve and the 
AE event scatter plot, it can be seen that the load curve 
or the number of AE events has a certain correlation, and 
both can reflect the internal damage state of the wood to 
a certain extent. However, they cannot accurately demon-
strate the various stages of internal damage to the wood.

Table 2  TP, FP, FN, TN

Labeled as positive Labeled as negative

Predicted as positive True positive (TP) False positive (FP)

Predicted as negative False negative (FN) True negative (TN)

Fig. 4  Time–load curve
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The original AE signal of the test process is illustrated 
in Fig.  5, which contains 1.85 × 108 data points accord-
ing to the sampling frequency and duration. From Fig. 5 
and the distribution of AE events in Fig. 4, it can be eas-
ily observed that many AE signals have been generated 
before the load reaches the maximum, which indicates 
that microcracks have been inside the sample wood. 
As mentioned before, internal damages of wood can be 
roughly divided into four basic types from the micro-
scopic point of view. Thus, in this study, the original sig-
nal was also divided into four segments according to its 
amplitude, corresponding to these four types. 0–100  s 
can be regarded as a small amount of AE signal caused 
by wood cell wall buckling and collapse, which is called 
buckling AE signal. 100–150 s can be regarded as a sta-
ble small amplitude AE signal caused by the damage and 
delamination of wood cell wall interface, which is called 
deformation AE signal. 150–200 s can be regarded as AE 
signals that are more chaotic and high-energy than those 
in the second stage due to the formation and expan-
sion of wood micro-crack damage zone, which is called 
micro-crack AE signal. 200–370 s produced a large num-
ber of long lasting and complex AE signals, which can be 
considered as AE signals caused by wood cell wall frac-
ture, and this AE signal is called fracture AE signal.

Signal decomposition and reconstruction
Figure  6 shows the time-domain signals corresponding 
to each IMF component after EMD decomposition of 
5 × 104 sample data. It can be observed that the signal 
energy is mainly concentrated in the first five IMF com-
ponents. Figure 7 shows the kurtosis and the mean value 
of instantaneous frequency of IMF components. It can 
be learned that the normalized kurtosis values of the first 
two IMFs are much greater than that of other IMFs, and 
the IMFs with the greater kurtosis values contain more 
useful information. Moreover, Fig.  7b shows that the 
power of AE signals is mainly concentrated in the first 

four IMFs. Therefore, considering signal energy, kurtosis, 
and instantaneous frequency comprehensively, the first 
four IMFs were selected to reconstruct AE signals.

Dataset and segmentation
In this study, DWT was used to extract the frequency 
domain features of AE signals. Due to its good smooth-
ing effect, the db4 wavelet was selected as the basis func-
tion. The reconstructed signals were decomposed by an 
8-layer discrete wavelet. The detailed components of the 
eight scales cD1–cD8 and the approximate component 
of the eighth scale cA8 were selected as the frequency 
domain features of AE signals. Figure 8 shows the time–
frequency signals obtained by DWT decomposition of 
104 sample data. It can be seen that the length of data for 
each approximate component from cD1–cD8 decreases 
layer by layer, thus greatly reducing the subsequent com-
putation time for feature extraction.

For better computational efficiency, 10,000 data points 
are treated as a sub-segment, corresponding to a period 
of 0.02  s, and used it as the basic unit for subsequent 
processing. Thus, there were 18,500 sub-segments in 
this study, and the number of sub-segment in each type 
is determined by the total amount of data in this type. 
Then, the DWT decomposition was performed for each 
sub-segment separately and calculating feature values 
(entropy, crest factor, impulse factor, margin factor, and 
waveform factor) for eight layers of detail components, 
one layer approximate component, and the mean ratio 
of absolute values in each layer. Finally, a dataset was 
obtained, containing 18,500 × 53 (5 × 9 + 8) feature data.

Moreover, it should be pointed out that the length of 
the sub-segment may influence the value of the extracted 
features, thereby affecting the classification result. How-
ever, the focus of this article is on the characteristics 
and processing methods of AE signals, rather than data 
length. Furthermore, for AE signals with a frequency 
range of 50–200 kHz, a sub-segment with a duration of 
0.02  s, selected in our study, almost cover all potential 
information.

Training and test results based on LDA
The LDA was used to conduct training and testing on 
obtained dataset (70% for training, 30% for validation). 
Figure  9 is the confusion matrix obtained. The evalua-
tion indexes (precision, recall, F1-score, micro-average, 
macro-average, and weighted average) were calculated 
according to the confusion matrix, and the results are 
shown in Table  3. Overall, this model achieves a high 
classification performance. As shown, the evaluation 
indexes of the four types all almost reach 0.95.

Figure  10 shows the curves of model training accu-
racy and loss value. In general, the larger the area (AUC) Fig. 5  Original acoustic emission signal
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Fig. 6  EMD decomposition of AE signals

Fig. 7  Normalized kurtosis/instantaneous frequency
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under the accuracy (ACC) curve is, or the closer the 
curve is to the upper left corner, the more accurate the 
training model will be. From Fig. 10, it can be observed 
that as the number of training iterations increases gradu-
ally, the total loss value shows an overall trend of decline 
and converges after a certain number of iteration steps. 
This demonstrates that the model is of good convergence 
characteristics. Furthermore, the relations of the train-
ing curve and the validation curve in Fig. 10 indicate that 
the model did not overfit or underfit. Moreover, it can be 
noticed that from those figures and table the classifica-
tion of the Type 0 and Type 3 is very accurate, while that 

of the Type 1 and the Type 2 has a higher misjudgment 
rate. For example, it can be learnt from the confusion 
matrix that 185 data of the Type 1 are misclassified as the 
Type 2, while 81 data of the Type 2 are misclassified as 
the Type 1. In fact, the AE signals change gradually with 
the increase of pressure, and there is no strict boundary 
between the Type 1 and Type 2 of AE signals. In other 
words, the two types of AE signals, especially those that 
are close to the designated classification boundary, have 
high similarity. In addition, the data numbers of these 
two types are less than that of the other two types. Con-
sequently, it is reasonable for a certain number of mis-
judgments to occur.

Furthermore, the purpose of our classification is to 
automatically detect and identify the internal damage of 
the wood, so even if there are a certain number of mis-
judgments, it will not affect our ultimate goal. The reason 

Fig. 8  Discrete wavelet transform of AE signal

Fig. 9  Confusion matrix of beech

Table 3  Evaluation indicators

Classification report

Precision Recall F1-score Support

0 1.00 0.99 0.99 1441

1 0.88 0.75 0.81 765

2 0.78 0.88 0.82 734

3 0.99 1.00 0.99 2610

Micro-avg 0.95 0.95 0.94 5550

Macro-avg 0.91 0.90 0.90 5550

Weighted avg 0.95 0.95 0.95 5550
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is that in the process of detection and identification, if the 
AE signals are frequently and alternately recognized as 
the second or third type, it indicates that the wood is in 
the transitional stage of deformation and microcracking.

Comparative analysis
To illustrate the performance of the signal process-
ing methods introduced in this study, the classifica-
tion results of unprocessed and processed signals are 
compared, as shown in Table 4. From Table 4, it can be 
learned that the classification performance of unpro-
cessed signals is lower than that of others. Its accuracy 
can only reach about 75%. However, no matter which 
signal processing method is adopted, the classification 
performance can be improved to a certain extent. For 
example, compared with the results of unprocessed AE 
signal, the overall accuracy of the AE signal processed by 
EMD and DWT is increased by 27.68%. Thus, it can be 

concluded that the signal processing methods proposed 
in this study do improve classification accuracy.

Furthermore, a comparative study is conducted on the 
influence of different features on the classification results. 
Here, three feature groups are used: Type 1 included 
some common statistical features, such as mean, stand-
ard deviation, skewness, median, etc. Type 2 contained 
features introduced in this study. Type 3 took all features 
mentioned before. The classification results are shown 
in Table 5. As shown, the accuracy, precision, recall, and 
F1-score of Type 1 are 0.820, 0.809, 0.820, and 0.806, 
respectively. Those of Type 2 are 0.946, 0.947, 0.946, and 
0.945, respectively, and the overall accuracy is increased 
by 16.26%. However, the classification result of Type 
1 + 2 is slightly lower than that of Type 2. It indicates that 
more features do not mean higher accuracy. The reason 
is that the existence of redundant features with reduced 
discriminative power may confuse the classifier. Thus the 

Fig. 10  Training and validation accuracy/loss

Table 4  Comparison of classification results between unprocessed signals and processed signals

Accuracy Precision Recall F1-score

Unprocessed signals 0.748 0.740 0.748 0.728

EMD 0.779 (4.14%) 0.791 (6.89%) 0.779 (4.14%) 0.766 (5.22%)

DWT 0.847 (13.24%) 0.837 (13.11%) 0.847 (13.24%) 0.832 (14.29%)

EMD + DWT 0.946 (26.47%) 0.947 (27.97%) 0.946 (26.47%) 0.945 (29.81%)

Table 5  Comparison of classification results between different feature types

Accuracy Precision Recall F1-score

Feature Type 1 0.820 0.809 0.820 0.806

Feature Type 2 0.946 (15.37%) 0.947 (17.06%) 0.946 (15.37%) 0.945 (17.25%)

Feature Type 1 + 2 0.921 (12.32%) 0.924 (14.22%) 0.921 (12.32%) 0.920 (14.14%)
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feature selection is of ultimate significance in produc-
ing a more accurate model. Even so, it is not the focus of 
this article. And the results demonstrate that entropy and 
other features related to signal shape are more useful in 
AE signal detection and classification.

Pinus sylvestris
To further verify the method proposed in this article, the 
same three-point bending experiment was utilized on 
the sample wood of Pinus sylvestris, and AE signals were 
collected and processed with the same method. All the 
experiment settings are the same as that of the previous 
test. The results are as follows.

Original signal obtained from experiment
The test lasted 281  s and the sampling frequency was 
500 kHz, so 1.405 × 108 data signals were obtained. The 
original AE signals are shown in Fig.  11. In order to 
analyze the relationship between stress and AE signal 
generation, the same experimental method as the AE 
experiment of beech was adopted, and the correspond-
ing time–load curve and the scatter distribution of AE 
events was plotted (Fig. 12). It can be seen from Fig. 11 
that there is almost no AE signal before the 50th second, 
and some AE signals are generated between 50–80 s, and 
the amplitude gradually increases. After the 80th second, 
a large number of AE signals are generated. And most of 
them can reach the maximum amplitude. At the same 
time, it can be seen from Fig. 12 that the load reaches its 
maximum value at the 216th second, and a large num-
ber of AE events have occurred before this time. After 
this time, the number of acoustic emission events has 
increased significantly.

It should be noted that, unlike that of beech, the ampli-
tude of the AE signals of Pinus sylvestris reached the 
maximum at 80th second prefer to at the moment that 
the load reached the maximum. The difference in the 

type or internal structure of the wood samples leads to 
this result. However, this also persuasively demonstrates 
why it is difficult to accurately judge the internal damage 
state of the sample wood only by the amplitude of the AE 
signal. In addition, it can be seen from Fig.  12 that the 
number of AE times in different time periods does not 
have a clear dividing line. Therefore, it is also difficult to 
classify AE signals by the number of AE events.

Test results based on LDA classification model
In order to accurately identify the internal damage states 
of specimens in different periods, LDA classification 
model built by experiment of beech was utilized to train-
ing and testing the AE signals of Pinus sylvestris. The 
experimental results are shown in Fig.  13, and the clas-
sification evaluation indexes are shown in Table 6.

According to the classification results, the accuracy of 
the classification model reached 90.58%. And, the model 
accurately divided the damaged AE signals of Pinus syl-
vestris into four types. That is, 0–50 s is the buckling AE 
signal, which the wood cell wall begins to buckle and col-
lapse; 50–80  s is the deformation AE signal, which the 
wood cell wall interface begins to be damaged and delam-
ination; 80–210 s is the micro-crack AE signal, which is 
the formation and expansion of the damage zone of wood 
micro-crack; 210–281 s is the fracture AE signal, which 
the wood cell wall fracture and continues to expand.

It can be seen that although implemented on different 
tree species, this method still achieves good classification 
accuracies. Among them, the classification accuracy of 
the Type 0 and Type 1 of AE signals is lower than oth-
ers, which may be related to the smaller amount of data 
of these types of AE signals. However, this method can 
better distinguish the signals of Type 1 and Type 2 that 
are difficult to distinguish only based on the number of 
AE events. Last but not least, this method can accurately 

Fig. 11  Original acoustic emission signal of Pinus sylvestris 

Fig. 12  Time–load curve
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classify the Type 2 and Type 3 that are difficult to distin-
guish based on the amplitude alone.

Conclusion
The nondestructive testing technology of AE signal for 
wood is of great significance for the evaluation of internal 
damages of wood. The research in this paper shows that: 
compared with typical statistical features, features intro-
duced in this study such as entropy, crest factor, pulse 
factor, margin factor, and waveform factor have a higher 
sensitivity to damages; signal processing and feature 
extraction methods based on EMD and DWT can reduce 
computational costs and improve the accuracy of the 
classifier; the automatic classification model proposed in 
this paper has good AE signal recognition performance.

Moreover, this classification model lays a foundation 
for future research on the real-time monitoring and auto-
matic identification of wood damage for wood material 
products such as building facilities, furniture materials, 
wooden ancient buildings, and music devices.

Future research includes: extending the model to dif-
ferent tree species; looking for more sensitive signal 

features, studying feature extraction and selection meth-
ods; adopting different machine learning classification 
algorithms; thereby establishing a higher accuracy and 
more generalized wood damage prediction model.
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