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A one-dimensional elasto-viscoplastic model 
coupled to damage for the description of creep 
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Abstract 

This work focuses on the development of a model for the description of the tertiary creep phenomenon in wooden 
materials. We stared from an extended standard solid body model capable of best describing primary and second-
ary creeps. We then modify this model by introducing a damage variable to explain and model the rapid growth 
of viscoplastic strain during tertiary creep. We obtain a model comprising a reduced number of parameters (05) all 
physically interpretable; which can be easily determined from the results of creep tests. The proposed model has been 
tested using the experimental results of creep-rupture tests and it has been shown to be very suitable for describing 
the three phases of creep, with a relative error of less than 1%. The breaking time proposed by the model is lower, 
but very close to the experimental breaking time (Err = 0.01). The time to failure is easily accessible, thanks to the 
simplicity of our model, without necessarily going through heavy algorithms. This represents a significant advantage 
of our model, which in sum offers both a more realistic way of describing the three phases of creep by fully account-
ing for the phenomenon of damage during the tertiary phase, and a simple and fast way to analyze the rupture time, 
compared to other models in the literature. Our model is therefore presented as a good alternative for modeling the 
behavior of wood material under creep stress.
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Introduction
The context of sustainable development and respect for 
the environment have in recent years aroused an ever-
growing interest in the use of biological materials, espe-
cially those based on wood. These biological materials, 
due to their cellular composition (lignin, cellulose, hemi-
celluloses), can experience a state of deformation evolv-
ing over time even under stresses kept constant [1, 2]. 
This behavior is known as creep and is defined as the 
growth of strain over time under constant loadings.

It appears to be of strategic importance for engineers, 
with the aim of offering better safety conditions as well 

as better predictions of the lifespan of the materials 
structures, to be able to describe and characterize creep 
deformations. Much work has been undertaken in this 
direction [1–9] to name only those. Tests show that 
wood up to a certain load limit exhibits linear viscoelastic 
behavior. It is possible to determine a stress level below 
which the strain under creep evolves towards a finite 
value [1, 3, 5]. In this case, the creep curve has only two 
parts namely the primary creep and secondary creep. 
The work of Foudjet and Guitard, [1, 3] show that the 
mechanical behavior of the wood material is appreciably 
linear for loading rates lower than a third of the break-
ing load. For high stress levels, the material experiences 
irreversible deformations which remain even after stress 
cancellation [3, 5]. Wood can therefore under certain 
stresses show plastic behavior. Also, under high stress 
and for fairly long periods of time, wood experiences 
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the onset of the damage phenomenon which is respon-
sible for the rapid growth of deformation during tertiary 
creep. The various experimental observations made on 
the mechanical behavior of wood material therefore show 
that it has, depending on the type and level of stress, an 
elastic, viscous and plastic behavior.

Wood is therefore a complex material, a complexity 
which is increased by the sensitivity of its mechanical 
properties to ambient climatic conditions [1]. The com-
plexity of the wood material makes it difficult to model 
its behavior; so that it is almost futile to imagine a model 
describing the behavior of wood without resorting to 
some simplifying assumptions.

However, for the most faithful modeling, the simplify-
ing hypotheses must not only be reduced in number, but 
also be based on experimental observations.

Many models have been proposed for modeling the 
creep behavior of wood. They can easily be grouped into 
two classes, namely: mathematical models and rheologi-
cal models [8]. Mathematical models use mathemati-
cal functions whose parameters are determined from 
laboratory test results for the description of the creep 
curve. They have the advantage of the reduced number 
of parameters required for modeling and suffer from 
the disadvantage of the lack of physical significance of 
these parameters. The mathematical functions gener-
ally used are the powers functions, the logarithmic and 
exponential functions [6, 7, 10]. The rheological models 
use combinations of springs, viscous pots and pad for 
the modeling of elasticity, viscosity and plasticity, respec-
tively. They require a relatively large number of param-
eters, which is their major disadvantage, but on the other 
hand, their advantage is that they have parameters that 
are physically interpretable. The classic models com-
monly encountered are those of Maxwell (association of 
series of spring and viscous pot) Kelvin (parallel associa-
tion), Burgers [11–13]. Some of these rheological models 
have shown their efficiency in capturing primary creep 
(Kelvin) and the onset of secondary creep (Burgers) [13, 
14], but have difficulty in describing the end of secondary 
creep and tertiary creep. Modifications are usually made 
to these models to describe the end of secondary creep 
and material failure. In the wake of these approaches, we 
find the work of authors such as [13, 15] to quote a few.

One of the crucial points in modeling wood creep is 
the capture of tertiary creep and failure. Tertiary creep 
remains insufficiently described. Indeed, the models pro-
posed for the modeling of tertiary creep and the fracture 
of wood are generally focused on the determination of 
the final rupture time [16–20]; and ignore the process 
of deformation evolution during tertiary creep phase. 
However, understanding and describing this deforma-
tion process is just as important for a full understanding 

of the phenomenon of creep. This problem has recently 
been the subject of the work of authors such as Wang 
et al. [16], Kaliske [21]. Wang et al. modified the Burgers 
model by introducing a damage variable to describe the 
creep failure of wood materials, their model was shown 
to be effective in predicting the failure time, but was not 
able to capture the rapid growth of the strain which pre-
cedes the failure. Moreover, the model proposed by Wang 
et al. does not take into account the existence of a thresh-
old plasticity stress such as the work of Foudjet, Guitard, 
and others [1–3, 5] has shown. The model proposed by 
Kaliske et  al. [21] takes into account the existence of a 
linear viscoelastic limit, and describes tertiary creep and 
in particular creep failure. The approach used by Kaliske 
et al. to define the failure criterion is an approach based 
on strain energy density, introduced and developed by 
authors such as [20, 22–24]. This approach, although it 
has shown its effectiveness in defining the failure crite-
ria for certain types of stress such as compression and 
tension [24], nevertheless remains pregnant for a large 
number of stresses. To our knowledge, there is no work 
allowing an unambiguous description of an energy fail-
ure criterion for all types of stresses. In addition, the 
description of the evolution of the deformation of the 
tertiary creep as proposed by Kaliske et al. does not take 
into account the phenomenon of damage, damage which 
nevertheless has a fully established responsibility in the 
occurrence and development of tertiary creep [2, 25, 26].

The objective of the present work is to propose a model 
which describes the elastic, viscous and plastic behav-
ior of wood materials during creep, while taking into 
account the phenomenon of damage for a better descrip-
tion of tertiary creep and fracture by creep. The proposed 
model is a rheological and one-dimensional model. The 
model will be validated by the results of tests carried out 
by Wang et al. [16]. Our work includes the following sec-
tions: "Development of the model", where we present the 
hypothesis and equations which have led to the develop-
ment of the model as well as the method of determin-
ing the parameters, Validation of the model, where the 
results are presented and commented on and "Conclu-
sion" section.

Development of the model
The model is developed with the aim of describing as 
faithfully as possible the experimental observations made 
on the behavior of the wood material under creep stress. 
These observations are [1–3, 24–26]:

– Instant elasticity,
– Viscoelasticity,
– Damage and rupture.
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As the wood material is a biological material, its 
mechanical behavior is strongly influenced by its humid-
ity level. This humidity level is also responsible for 
another phenomenon observed experimentally, namely 
mechano-sorption. This phenomenon will not be taken 
into account in the present model. In addition, the 
humidity level will be assumed to be constant for our 
material.

Instantaneous elasticity
This is the instantaneous deformation of the mate-
rial upon application of the stress. This deformation 
disappears entirely as soon as the stress is canceled. It 
is modeled by a purely elastic spring of stiffness E. The 
stress–strain relation is given by Hooke’s law:

Viscoelasticity
It is the growth of strain under constant stress. This 
deformation does not cancel instantly upon removal of 
the stress; it gradually disappears during the so-called 
recovery phase. The evolution of viscoelastic deformation 
is a function of the level of stress. [1, 3] In the literature, 
it is frequently modeled by simple or generalized fields of 
Kelvin–Voigt or Maxwell [14, 24]. One of our objectives 
being to take into account the existence of a finite limit 
in creep for low stress levels, and this with a reduced 
number of parameters, we carry our choice on the model 
of Kelvin–Voigt; because, Maxwell’s body reflects the 
behavior of a fluid without the possibility of equilibrium 
for constant and non-zero stress [27]. The stress and 
strain relation for this model is given by:

where the elastic modulus of the spring E1 is, η1 is the vis-
cosity coefficient of the viscous pot, and εve(t) is the vis-
coelastic strain.

Viscoplasticity
The works of Van der put, Gressel and Hasanni [5, 13, 
14] show that wood, for certain stress thresholds has 
a viscoplastic behavior where the stress is a function of 
the strain rate, which strain does not cancel out when 
the stress disappears even after a long enough time, thus 
leaving a residual strain or even plastic strain. Plastic 
behavior is frequently modeled using a pad, and visco-
plasticity by a series and/or parallel association of a pad 
and a damper.

One of our objectives being to take into account the 
existence of a threshold conditioning the birth of nonlin-
earity phenomena, we adopt a simple Bingham element, 

(1)σ(t) = Eε(t).

(2)σ(t) = E1εve(t)+ η1ε̇ve(t),

which is a parallel association of a damper and a pad. The 
stress strain relation for this model is:

where ηvp is the viscosity coefficient of the damper, σy 
is the threshold plastic stress, and εvp is the viscoplastic 
strain.

We have so far individually modeled each of the phe-
nomena (elasticity, viscoelasticity, viscoplasticity) 
observed experimentally by single and/or combined ele-
ments. It is now a question of combining all these indi-
vidual elements for the modeling of the general behavior 
of the material. The combination must, however, have a 
reduced number of parameters and be thermodynami-
cally valid (possibility of partitioning the total defor-
mation among others) in addition to having physically 
interpretable parameters and to describe fairly faithfully 
the behavior of the material. A series association of the 
spring, the Kelvin–Voigt body and the Bingham body 
leads to an extended standard solid body model (Fig. 1), 
[21].

This model admits the possibility of the partition of the 
deformation and presents a reduced number of param-
eters which are all physically interpretable. Note that 
if we take σy = 0 , we obtain the Burgers model, which 
is known [8, 13] for its ability to best describe primary 
creep and the onset of secondary creep. We will therefore 
adopt the model for the rest of our modeling.

The partition of the total deformation makes it possible 
to write:

And the serial association makes it possible to write:

Damage and failure
For fairly long durations, and stresses greater than a 
certain threshold, the creep deformations of the mate-
rial experience an exponential growth which leads to 
the rupture of the material. This is the last phase of 
creep or tertiary creep. The literature offers several 

(3)σ = ηvpε̇vp + σy; with σ ≥ σy,

(4)ε = εe + εve + εvp.

(5)σ = σe = σve = σvp.

Fig. 1 Extended standard solid body model [21]
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approaches for the description of this phenomenon. 
Authors such as Wang, Cai, Pierce et  al. [13, 15, 16] 
have modified the components of the model by intro-
ducing a damage variable to explain tertiary creep.

This approach, although yielding significant results, 
encounters a certain number of difficulties, namely 
firstly the too large number of parameters and the diffi-
culty in finding a physical interpretation of each param-
eter. The other difficulty remains the basic rheological 
model chosen for this modeling, namely the Burgers 
model. If the Burgers model is known for its ability to 
properly describe primary creep and the onset of sec-
ondary creep, it remains insufficient to describe the 
existence of a finite limit of creep strains under low 
stress levels.

However, any model which must serve as a basis for 
modeling damage and therefore tertiary creep must 
first be able to model as faithfully as possible the entire 
behavior of the material in the absence of damage. The 
model proposed by Reichel and Kaliske and adopted as 
a basic model within the framework of the present work 
captures very well the primary and secondary creep, and 
materializes well the finite limit for low levels of stresses.

However, for the description of tertiary creep, they 
used an approach based on strain energy density. This 
approach measures the strain energy e(t) defined by:

This strain energy measured at each increment of the 
strain is compared with a threshold value characteristic 
of each material, threshold value beyond which the mate-
rial breaks. This approach has been shown to be effective 
for the description of creep failure in that it allows a fail-
ure criterion to be defined. However, according to Becker 
[18], it remains insufficient to describe the rapid growth 
of strain during tertiary creep and is therefore unable to 
capture tertiary creep. To solve this problem, Reichel and 
Kaliske modified the viscoplastic viscosity coefficient by 
adding to it a factor governed by an arc-tangent func-
tion which decreases this coefficient when the strain 
increases. This approach, although having led to the cap-
ture of tertiary creep, does not take into account the phe-
nomenon of damage, damage which however has a fully 
established responsibility in the occurrence of tertiary 
creep [2, 25, 26]. Indeed, the rapid growth of deformation 
during tertiary creep is due to the progressive decrease 
in rigidity, itself caused by the multiplication of gaps 
within the material, and therefore by damage. It therefore 
appears more reasonable and more realistic to take into 
account a damage variable in the modeling of tertiary 
creep.

(6)e(t) =

t
∫

0

σ ε̇dt.

Moreover, this approach used by the authors intro-
duces two parameters in the tangent arc function, param-
eters which are not easily accessible.

The originality of our approach in our modeling con-
sists in modifying the component of the rheological 
model responsible for Viscoplasticity, by introducing a 
damage variable to better describe the rapid growth of 
the strain during tertiary creep, and thus model the ter-
tiary creep. Our approach will make it possible to take 
into account the damage phenomenon so observed in the 
tertiary phase of creep, and thus lead to a model that is 
more faithful to reality and at the same time simpler. This 
modification will be made based on a set of assumptions 
all based on experimental observations.

Hypothesis 1 The damage begins after a certain thresh-
old plastic deformation. It has been observed that the ini-
tiation of the damage is consecutive to the large plastic 
deformations [25, 26]. There is therefore a threshold of 
plastic deformation conditioning the onset of the dam-
age phenomenon. The damage variable therefore acts on 
the component of the solid responsible for viscoplastic-
ity. We therefore assume that there is a defined threshold 
value εD such as:

Hypothesis 2 The damage affects the coefficient of vis-
cosity. The rapid growth of strain during tertiary creep is 
due to the gradual decrease in the coefficient of viscosity; 
the decrease is caused by the loss of rigidity, itself caused 
by the multiplication of gaps in the material, and there-
fore by damage. We therefore consider that the coeffi-
cient of viscosity of our material experiencing damage D 
is given by:

Hypothesis 3 The damage, once initiated knows an 
exponential growth, according to the stress level. We 
therefore admit that the damage is given as a function of 
time and of the stress by the relation:

where t0 is the instant at which the damage begins, and 
β a parameter conditioning the effect of the stress on the 
damage. The form of Eq. (9) is chosen to ensure that the 
damage evolves in the interval [0, 1], [27]. The instant t0 is 
defined as:

(7)
{

Ḋ ≥ 0, ∀ε ≥ εD
Ḋ = 0, ∀ε ≺ εD

.

(8)η̃vp = η
vp
0 (1− D).

(9)D(t) = 1 − exp (−βσ(t − t0)),
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By putting Eqs. (8) and (9) in Eq. (3), we obtain the fol-
lowing modified rheological model (Fig. 2), with D given by 
Eq. (9).

Expression of the total strain
The total strain ε(t) is given by relation (4) respecting the 
hypothesis of the partition of the total strain, in elastic, vis-
coelastic, and viscoplastic strain.

The elastic deformation is obtained from Eq.  (1) taking 
into account relation (5) and is given by:

The viscoelastic strain is obtained by solving Eq. (2) and 
is given by:

The development of the viscoplastic strain being depend-
ent on the stress level, to express them, we consider the 
situation where the stress is greater than the plasticity 
threshold. So σ ≥ σy ; thus, we can distinguish two situa-
tions. The first situation is where the plastic deformations 
evolve, but have not yet reached the threshold causing the 
damage to start. In this case, and in accordance with rela-
tion (7) obtained from hypothesis 1, Eq.  (3) allows us to 
write:

An integration of (14) makes it possible to write:

In Eq.  (14), the integration constant c is determined by 
considering the condition:

This gives:

(10)ε(t0) = εD.

(11)εe =
σ

Ee
.

(12)εve =
σ

E1

(

1− exp

(

−
E1

η1
t

))

.

(13)ε̇vp =
σ − σy

ηvp
.

(14)εvp =

(

σ − σy

ηvp

)

t + c.

(15)t = 0, εvp = 0.

The viscoplastic deformation before the onset of 
damage therefore has the following expression:

The second situation is when the plastic deformations 
have evolved to the point of causing the onset of dam-
age. Thus, Eqs. (3), (8) and (9) allow us to write:

From Eq.  (18), we get the expression for ε̇vp , which 
gives us:

By replacing the damage D in Eq.  (19) by its value 
given by Eq. (9), we get:

A rewrite of (20) gives us:

An integration of (21) gives us:

The integration constant εvp0 is determined by look-
ing at the instant (t0) when the damage begins. We have 
from Eq. (17):

To ensure the continuity of the deformation to the 
left and to the right of the instant when the damage is 
initiated, we have, starting from Eqs. (22) and (23):

From relation (24), we obtain the integration constant 
εvp0 , which gives:

By inserting the constancy εvp0 obtained in (24) 
into Eq.  (22), we finally have the expression of the 

(16)c = 0.

(17)εvp =

(

σ − σy

ηvp

)

t.

(18)σ = ηvp(1− D)ε̇vp + σy.

(19)ε̇vp =
σ − σy

ηvp(1− D)
.

(20)ε̇vp =
σ − σy

ηvp(exp(−βσ(t − t0))
.

(21)ε̇vp =
(σ − σy)

ηvp
[exp(βσ(t − t0))].

(22)εvp =
σ − σy

βσηvp
[exp(βσ(t − t0))]+ εvp0.

(23)εvp(t = t0) =

(

σ − σy

ηvp

)

t0.

(24)
(

σ − σy

ηvp

)

t0 =
σ − σy

βσηvp
+ εvp0.

(25)εvp0 =
σ − σy

βσηvp
[βσ t0 − 1].

Fig. 2 Proposed model
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viscoplastic strain taking into account the damage phe-
nomenon as follows:

Thus, the total deformation is given from Eq. (4) by:
ε = εe + εve + εvp. This gives, by grouping the results 

(11), (12), (17) and (26):

The system of Eq.  (27) describes the dynamics of the 
rheological model that we propose for modeling the 
damage of wood material under creep stress.

This model that we propose requires a total of five 
independent parameters all physically interpretable and 
easily accessible ( Ee,E1,η1,ηvp and β ), which is low, com-
pared to the model proposed by Kaliske et al. [21] which 
has a total of six independent parameters. The model 
captures the rapid change in strain during tertiary creep 
while accounting for damage.

Determination of the model parameters
The parameters,Ee , E1 , η1 and ηvp can be determined 
through low stress creep tests. The parameter σy repre-
senting the plasticity threshold is determined experimen-
tally through creep-recovery tests under high stresses. Its 
empirical value proposed in the literature is 35 to 50% of 
the breaking stress of the material [1, 3, 5]. The parameter 
β conditioning the evolution of the damage and the plas-
tic strain’s rate can be determined from the strain rate of 
tertiary creep. It is given by the slope of the logarithm 
of the tertiary creep strain rate. Indeed, starting from 
Eq. (21) we have:

Relation (28) gives the logarithm of the tertiary creep 
strain rate. As shown by this relation (28), the logarithm 
of the tertiary creep rate is a line whose slope is the prod-
uct of the stress by the parameter β . From this slope, we 
therefore deduce the parameter β by:

(26)εvp(t) =
σ − σy

βσηvp
[exp(βσ(t − t0)+ βσ t0 − 1].

(27)ε(t) =











σ
Ee

+ σ
E1
(1− exp(−E1

η1
t)),∀σ ≤ σy; (a)

σ
Ee

+ σ
E1
(1− exp(−E1

η1
t))+ (

σ−σy
ηvp

)t, ∀σ ≻ σy, et, ∀t ≤ t0; (b)

σ
Ee

+ σ
E1
(1− exp(−E1

η1
t))+ (

σ−σy
ηvp

)t +
σ−σy
βσηvp

[exp(βσ(t − t0))+ βσ t0 − 1], ∀σ ≻ σy, et, ∀t ≥ t0.(c)

.

(28)
ln(ε̇vp) = ln

(

(σ − σy)

ηvp
[exp(βσ(t − t0))]

)

=βσ(t − t0)+ ln

(

σ − σy

ηvp

)

.

(29)β =
tan α

σ
,

where tan α is the slope of the line representing the loga-
rithm of the tertiary creep rate.

The parameter t0 depends on the stress σ and the plas-
tic deformation εD damage threshold and can be obtained 
through relations (10) and (27b), which allow us to write:

The numerical resolution of Eq.  (30) provides the 
parameter t0.

One of the essential points for determining the param-
eters of the model is the determination of the instant t0 
from which the damage begins. In general, in the mod-
els proposed for the description of the failure by creep of 
materials, the moment t0 from which the damage begins 
is very often ignored, in favor of the moment tr of fail-
ure. Indeed, authors are generally more interested in the 
moment tr of failure than the moment of onset of dam-
age. It seems important to us to be equally interested in 
the moment at which the damage begins in the modeling 
of failure by creep, because for certain materials, like 
brittle materials, the failure is so fast or sudden, that one 
can easily think that the moment of the beginning of the 
damage is almost the same one as that of rupture. This 
moment being linked to the threshold deformation εD of 
damage by relation (30), it is necessary and sufficient to 
determine the threshold deformation of damage εD.

When the damaging stresses ( σ ≥ σy ) are kept con-
stant, the creep strain can only increase. This growth 
necessarily begins with the value: ε0 = σ

Ee
 which is the 

instantaneous elastic strain. The strain field of creep fail-
ure is therefore:

The onset of damage being consecutive to the large 
plastic deformations, it is evident that the threshold dam-
age deformation is included in the universe of deforma-
tions defined by relation (31). It is therefore logical to 
think that any increment �ε of strain starting from the 
value ε0 = σ

Ee
 results in a total strain value which may be 

a good candidate to represent the threshold strain for 
damage. One of the possible increments of strain is:

(30)

εD = ε(t0) =
σ

Ee
+

σ

E1
(1− exp

(

−
E1

η1
t0

)

+

(

σ − σy

ηvp

)

t0.

(31)ε ∈ [ε0,+∞].

(32)�ε =
σy

Ee
.
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The choice of this increment is motivated by the need 
to propose a model whose parameters depend on the eas-
ily accessible mechanical characteristics of the materials 
(modulus of elasticity, breaking load). This increment leads 
to a total strain value given by:

Relation (34) allows us to write:

The total strain given by relation (34) is therefore a good 
candidate to represent the value of the threshold damage 
strain. For the validation of our model, we adopt the value 
of the deformation of the relation (34) as the value of the 
threshold deformation of damage. Thus, we have:

The choice of this value is justified by the need to take 
into account the fact that the origin and development 
of damage strongly depend on the stress level and the 

(33)ε = ε0 +�ε.

(34)ε =
σ

Ee
+

σy

Ee
.

(35)εD =
σ + σy

Ee
.

mechanical characteristics of the material (elastic modu-
lus, breaking load).

Validation of the model
For the validation of the model, we use the experimental 
data obtained by Wang et al. [28]. The authors performed 
creep tests for up to a year on wood-based composites. 
Two batches of test specimens were requested under two 
different stress levels, the first batch loaded at 27 MPa 
and the second loaded at 33 MPa. The mechanical char-
acteristics of the material subject of this study were deter-
mined and are presented in the following table (Table 1).

The parameter Ee , modulus of elasticity is determined 
from the slope of the stress–strain relationship at the 
beginning of the loading. The parameters E1 , η1  and ηvp 
, are determined from the least squares method identical 
to that used by Wang et al. [16], using the SOLVER pro-
cedure in Excel software [29].

The determination of the parameters of the model led 
to the results set out in Tables 2 and 3. The calculation of 
the relative error of the model for each set of parameters 
was made according to the relation:

where N is the number of points, εcal(ti) and εexp(ti) are, 
respectively, the calculated value and the measured value 
of the strain.

The analysis of the mean and standard deviation for 
each parameter shows a low dispersion for some ( Ee and 

(36)Err =

√

√

√

√

N
∑

i=1

(

εcal(ti)− εexp(ti)

εexp(ti)

)2

,

Table 1 The mechanical characteristics of the material

Modulus of 
elasticity

Failure stress. 
( σu)

Limit of elasticity 
( σy = 0.42σu)

Means values 10,850 MPa 41.83 MPa 17.56 MPa

Table 2 Best-fitting parameters and error for the proposed models ( σ = 27MPa)

Specimen/parameters Ee (MPa) E1 (MPa) η1 ηvp t0 (s) β Err (%)

Fl 27 /5 9.62 ×  103 5.62 ×  104 7.09 ×  109 3.10 ×  1010 6.49 ×  106 1.87 ×  10–7 0.29

Fl 27/ 9 1.37 ×  104 2.64 ×  104 3.00 ×  106 1.68 ×  108 3.42 ×  103 7.40 ×  10–5 0.50

Fl27/10 8.16 ×  103 3.60 ×  104 1.50 ×  1010 3.50 ×  1010 4.64 ×  106 7.40 ×  10–7 0.24

Fl 27/3 1.03 ×  103 2.23 ×  104 8.59 ×  107 6.32 ×  109 3.26 ×  105 3.70 ×  10–6 0.29

Fl27/1 1.12 ×  104 2.33 ×  104 7.23 ×  106 7.79 ×  108 2.69 ×  104 1.03 ×  10–3 0.23

Fl27/2 1.26 ×  104 2.17 ×  104 5.64 ×  105 8.61 ×  106 2.60 ×  102 7.81 ×  10–4 0.50

Fl27/4 1.34 ×  104 1.93 ×  104 9.47 ×  105 7.54 ×  106 9.10 ×  101 8.51 ×  10–3 0.59

Fl27/6 9.00 ×  103 3.17 ×  104 9.73 ×  108 2.06 ×  1010 2.15 ×  106 1.48 ×  10–7 0.82

Fl27/7 1.13 ×  104 279 ×  104 8.60 ×  106 7.53 ×  108 4.05 ×  104 2.22 ×  10–5 0.48

Fl27/8 8.82 ×  103 3.18 ×  104 1.21 ×  1010 4.04 ×  1010 4.36 ×  106 2.22 ×  10–7 0.38

Fl27/11 1.22 ×  104 2.09 ×  104 2.00 ×  106 3.98 ×  108 4.45 ×  103 2.59 ×  10–4 0.37

Fl27/12 9.00 ×  103 3.77 ×  104 1.62 ×  1010 6.80 ×  1010 7.58 ×  106 3.70 ×  10–8 0.19

Fl27/13 1.08 ×  104 3.16 ×  104 9.10 ×  107 5.92 ×  109 4.28 ×  106 4.16 ×  10–6 0.13

Fl27/14 1.04 ×  104 2.61 ×  104 6.55 ×  109 6.65 ×  1010 4.10 ×  106 2.96 ×  10–6 0.77

Fl27/15 1.22 ×  104 3.40 ×  104 1.60 ×  108 4.19 ×  109 2.55 ×  105 3.70 ×  10–6 0.22

Means values 1.08 ×  104 2.98 ×  104 3.88 ×  109 1.87 ×  1010 2.03 ×  106 6.92 ×  10–4 0.40

Standard deviation 1.67 ×  103 8.70 ×  103 5.78 ×  109 2.33 ×  1010 2.50 ×  106 2.10 ×  10–3 0.20
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E1 ) and a high dispersion for others ( η1,ηvp and β ). This 
high dispersion is mainly due to the heterogeneity of the 
mechanical properties of the material. In addition, some 
samples may have initial defects in their breasts that 
are created either during sample preparation or during 

packaging. These initial defects accelerate the process of 
damage to the material during stress, cause very rapid 
rupture as observed by the authors for certain specimens, 
and thus justify, to a certain extent, the high dispersion of 
certain parameters of the model.

Table 3 Best-fitting parameters and error for the proposed model ( σ = 33MPa)

Specimen/parameters E0  E1 η1 ηvp t0 β Err

Fl33/8 1.2 ×  104 3.05 ×  104 1.94 ×  106 4.79 ×  106 1.50 ×  102 2.77 ×  10–2 0.47

Fl33/2 1.05 ×  104 3.79 ×  104 7.6 ×  106 4.68 ×  108 2.24 ×  104 3.03 ×  10–5 0.17

Fl33/4 1.31 ×  104 2.85 ×  104 1.75 ×  106 8.80 ×  106 1.56 ×  102 1.43 ×  10–2 0.38

Fl33/5 1.27 ×  104 3.85 ×  104 3.09 ×  106 2.80 ×  106 1.25 ×  102 1.5 ×  10–2 0.73

Fl33/7 1.27 ×  104 3.88 ×  104 1.06 ×  106 3.13 ×  106 1.23 ×  102 3.18 ×  10–3 0.41

Fl33/9 1.22 ×  104 2.46 ×  104 5.41 ×  106 4.66 ×  108 2.69 ×  103 6.05 ×  10–5 0.25

Fl33/10 1.15 ×  104 2.84 ×  104 3.00 ×  106 7.82 ×  107 1.85 ×  103 2.10 ×  10–3 0.76

Fl33/11 1.10 ×  104 4.10 ×  104 6.99 ×  106 3.62 ×  108 2.01 ×  104 7.5 ×  10–5 0.95

Fl33/12 1.03 ×  104 2.06 ×  104 3.09 ×  106 1.01 ×  108 7.24 ×  102 1.24 ×  10–3 0.27

Fl33/14 1.32 ×  104 3.04 ×  104 1.98 ×  106 2.06 ×  108 3.59 ×  103 1.06 ×  10–4 0.84

Fl33/15 1.22 ×  104 6.30 ×  104 1.07 ×  107 1.02 ×  108 6.03 ×  103 2.73 ×  10–4 0.22

Fl33/16 1.10 ×  104 3.38 ×  104 2.09 ×  109 6.24 ×  1010 2.52 ×  106 6.06 ×  10–8 0.33

Fl33/17 1.10 ×  104 3.83 ×  104 1.09 ×  109 1.41 ×  1010 6.81 ×  105 2.42 ×  10–6 0.40

Fl33/18 1.00 ×  104 3.52 ×  104 1.10 ×  109 7.59 ×  109 3.99 ×  105 3.00 ×  10–6 0.35

Fl33/19 1.03 ×  104 5.15 ×  104 1.12 ×  1010 4.75 ×  1010 3.23 ×  106 6.06 ×  10–7 0.15

Fl33/20 1.22 ×  104 6.53 ×  104 8.01 ×  107 1.32 ×  109 7.85 ×  104 3.03 ×  10–5 0.93

Fl33/22 1.10 ×  104 6.62 ×  104 2.09 ×  109 9.13 ×  109 6.50 ×  105 3.03 ×  10–6 0.57

Fl33/23 1.00 ×  104 2.83 ×  104 4.69 ×  1010 1.93 ×  1011 7.46 ×  106 1.51 ×  10–7 0.12

Fl33/25 1.18 ×  104 3.60 ×  104 9.66 ×  109 1.62 ×  1011 6.10 ×  106 2.12 ×  10–7 0.34

Fl33/27 1.22 ×  104 3.58 ×  104 1.09 ×  1010 2.92 ×  109 9.83 ×  106 2.72 ×  10–7 0.43

Fl33/28 1.32 ×  104 4.50 ×  104 1.84 ×  1010 2.41 ×  1011 9.13 ×  106 2.72 ×  10–8 0.51

Means values 1.16 ×  104 3.89 ×  104 4.93 ×  109 3.6 ×  1010 1.91 ×  106 3.06 ×  10–3 0.46

Standard deviation 1.04 ×  103 1.25 ×  104 1.06 ×  1010 6.94 ×  1010 3.60 ×  106 6.95 ×  10–3 0.25

Fig. 3 Comparison between experimental result and model simulation ( σ = 27MPa)
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The following figures (Figs. 3, 4 and 5) show the com-
parison between the experimental creep curves and the 
curves calculated from the model.

In Figs. 3, 4 and 5, one distinguishes the three phases 
of creep (primary, secondary and tertiary, as well for the 
experimental curves as for the numerical curves pro-
posed by our model. One notices very particularly, as 
regards the tertiary creep, that the numerical curve is 

almost superimposed on the experimental curve. More-
over, the calculation of the relative error shows that for 
the two levels of stress, the relative error is less than 1%, 
which means that the model is faithful and is therefore 
able to describe the three phases of creep. In these fig-
ures, we also distinguish the curve proposed by the 
model of Wang et al. It is noted that the model proposed 
by the authors is well suited to model the primary and 

Fig. 4 Comparison between experimental result and model simulation ( σ = 27MPa)

Fig. 5 Comparison between experimental result and model simulation ( σ = 33MPa)
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secondary creep, but it is difficult to describe the rapid 
growth of the strain during the tertiary creep. This dif-
ficulty has been underlined in their work [28], and can be 
corrected using the model that we propose.

The analysis of creep failure has mainly been focused 
on the determination of the final failure time tr . The 
final rupture time proposed by the model was deter-
mined and compared to the experimental rupture time.

The determination of the breaking time was made 
from the relation:

where Dc is the critical damage failure threshold, and tr 
is the final failure time. The theory of continuous dam-
age mechanics [27] considers that failure occurs when 
the damage reaches a critical value Dc = 1. However, it 
is observed experimentally [30] that the value of damage 

(37)tr = t0 −
ln(1− Dc)

βσ
,

at failure for the materials is always lower than 1. Within 
the framework of our study, we consider that the rupture 
occurs for a value of the damage at least equal to 90% of 
the theoretical critical value which leads us to Dc = 0.90. 
The results are shown in Tables 4 and Table 5. The cal-
culation of the relative error relating to the estimation of 
the breaking time was made according to the relation:

where texr  is the rupture time obtained experimentally, 
and tmr  is the rupture time obtained from the model.

The analysis of the failure time shows that the time 
to failure obtained by the model is slightly less than 
the experimental rupture time. Furthermore, the cal-
culation of the relative error related to the failure time 
shows that our model describes well the failure by 
creep.

(38)Err =

∣

∣tmr − texr

∣

∣

texr

,

Table 4 Experimental results and model predictions of time to failure ( σ = 27MPa)

Specimens/
parameter

1 2 3 4 5 6 7 8

t
m
r 2.71 ×  104 3.78 ×  102 3.58 ×  105 1.14 ×  102 5.95 ×  106 2.88 ×  106 4.64 ×  104 4.95 ×  106

t
ex
r 2.72 ×  104 3.83 ×  102 3.57 ×  105 1.15 ×  102 5.9 ×  106 2.89 ×  106 4.69 ×  104 4.5 ×  106

Err 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.09

(σ = 27MPa)

Specimens/
parameters

9 10 11 12 13 14 15 Means values

t
m
r 5.03 ×  103 4.84 ×  106 5.11 ×  103 9.88 ×  106 4.6 ×  105 4.16 ×  106 2.87 ×  105 2.26 ×  106

t
ex
r 5.04 ×  103 4.87 ×  106 5.10 ×  103 9.58 ×  106 4.61 ×  105 4.20 ×  106 2.89 ×  105 2.20 ×  106

Err 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

Table 5 Experimental results and model predictions of time to failure ( σ = 33MPa)

Specimens/
parameters

2 8 4 5 7 9 10 11 12 14

t
m
r 2.47 ×  104 1.57 ×  102 1.65 ×  102 1.35 ×  102 1.44 ×  102 4.53 ×  103 1.96 ×  103 2.19 ×  104 8.36 ×  102 4.90 ×  103

t
ex
r 2.49 ×  104 1.57 ×  102 1.68 ×  102 1.37 ×  102 1.49 ×  102 4.62 ×  103 1.97 ×  103 2.21 ×  104 8.78 ×  102 4.91 ×  103

Err 0.01 0.00 0.00 0.01 0.03 0.02 0.00 0.01 0.04 0.00

 ( σ = 33MPa)

Specimens/
parameters

15 16 17 18 19 20 22 23 25 27 Means

t
m
r 6.27 ×  103 3.84 ×  106 7.10 ×  105 4.35 ×  105 3.42 ×  105 8.31 ×  104 6.96 ×  105 8.16 ×  106 6.6 ×  106 1.03 ×  107 1.63 ×  106

t
ex
r 6.21 ×  103 3.8 ×  106 7.12 ×  105 4.34 ×  105 3.43 ×  106 8.47 ×  104 6.93 ×  105 8.19 ×  106 6.63 ×  106 1.04 ×  107 1.64 ×  106

Err 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01
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Conclusion
A model has been proposed in order to describe the 
primary, secondary and tertiary creep as well as the 
failure of wood-based materials. The model is a rheo-
logical model in which the choice of components and 
assembly was made in accordance with experimental 
observations and in the interests of minimizing the 
number of parameters. The proposed model has been 
tested using the experimental results of the creep tests 
carried out by Wang [28] and it is shown to be very 
capable of describing the three phases of creep, with a 
relative error of less than 1%. Also, the analysis of the 
time proposed by the model showed that the selected 
critical damage Dc = 0.90 considered as the break-
ing point damage led to a slightly lower breaking time 
(Err = 0.01) than the breaking time obtained experi-
mentally. The model requires a total of five independent 
parameters all physically interpretable and easily acces-
sible. The time to failure is easily accessible, thanks to 
the simplicity of our model, without necessarily going 
through heavy algorithms which are generally expen-
sive in time and memory space. This represents a signif-
icant advantage of our model, which in sum offers both 
a more realistic way of describing the three phases of 
creep by fully accounting for the phenomenon of dam-
age during the tertiary phase, and a simple and fast way 
to analyze the rupture time, compared to other models 
in the literature (Kaliske et al. [21], Wang et al. [16]).

However, the model was developed in a one-dimen-
sional case and assuming constant temperature and 
humidity conditions. It would be important to question 
the effects of humidity on temperature. A real challenge 
would also be that of taking into account non-constant 
stresses and the extension of the model to the three-
dimensional case. All these challenges open up per-
spectives for future work.
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