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Optimization of production parameters 
of particle gluing on internal bonding strength 
of particleboards using machine learning 
technology
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Abstract 

The particleboard (PB) production is an extremely complex process, many operating parameters affecting panel qual-
ity. It is a big challenge to optimize the PB production parameters. The production parameters of particle gluing have 
an important influence on the internal bond (IB) strength of PB. In this study, using grey relation analysis (GRA) and 
support vector regression (SVR) algorithm, a prediction model was developed to accurately predict IB of PB through 
particle gluing processing parameters in a PB production line. GRA was used to analyze the grey relational grade 
between the particle gluing processing parameters and IB of PB, and the variables were screened. The SVR algorithm 
was used to train 724 groups of particle gluing sample data between six particle gluing processing parameters and IB. 
The SVR model was tested with 181 sets of experimental data. The SVR model was verified by 181 sets of experimen-
tal data, and the values of mean absolute error (MAE), mean relative error (MRE), root mean square error (RMSE), and 
Theil’s inequality coefficient (TIC) of the model were 0.008, 0.017, 0.013, and 0.014, respectively. The results showed 
that the prediction performance of the nonlinear regression prediction model based on GRA–SVR is superior, and the 
GRA–SVR prediction model can be used to real-time predict the IB in the PB production line.
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Introduction
Particleboards (PB) have the characteristics of wide 
adaptability of raw materials and good mechanical prop-
erties, which has become one of the common boards in 
furniture manufacturing [1]. Three-layer particleboard is 
the most common PB, in which three-layer particles with 
different sizes are mixed with adhesive and hot-pressed 
at a certain temperature [2]. In the production process, 
the mechanical properties of PB are the key evalua-
tion indexes of its quality [3], and the internal bond (IB) 
strength is one of the most important mechanical charac-
teristics [4].

By combining image analysis technology with the 
mathematical model, Dai et al. [5–7] found that the resin 
content and particle thickness and other parameters 
would change the particle surface glue cover rate, and the 
glue cover rate would affect the cohesive force between 
particles, resulting in the reduction in IB. In subsequent 
studies, the team established a mechanistic model for 
estimating IB of PB, and the prediction results showed 
that there was a nonlinear relationship between IB and 
resin content, particle dimensions, product density and 
other parameters [8]. Lin et  al. [9] used single image 
multi-processing analysis technology to obtain the edge 
photos of PB and found that there was a significant cor-
relation between adhesive and IB, which could reflect the 
important influence of particle gluing production param-
eters on IB of PB. Based on the above studies, it can be 
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seen that the production parameters of particle gluing 
have an important impact on IB of PB. However, due to 
the lack of theoretical guidance related to the produc-
tion parameters of particle gluing, tuning its parameters 
can only be completed based on the actual experiences 
of workers, which is difficult to meet the accuracy of 
parameter regulation in the gluing process [10]. Using 
particle gluing parameters and IB to develop a nonlinear 
prediction model can improve the accuracy of parameter 
adjustment in particle gluing process, which is conducive 
to improving the quality of PB, stabilizing PB production, 
and provide theoretical guidance for the actual produc-
tion of PB. Therefore, it is necessary to develop the pre-
diction model of particle gluing parameters for IB of PB.

Young et  al. [11] developed the prediction model of 
IB of the fiberboard based on quantile regression (QR), 
and the prediction results are better than those of the 
model developed by multiple linear regression (MLR). 
The results from the study could save the production cost 
of fiberboard. Therefore, it is particularly important to 
find a suitable method for particleboard modeling and 
prediction. In the past few decades, technological pro-
gress has been made in the international research on the 
influence of particle gluing production parameters on IB 
of PB. Haftkhani et  al. [12] constructed a linear regres-
sion model based on pi-theorem theory to predict IB of 
PB according to particle size, adhesive ratio, and other 
parameters, but the linear model could not effectively 
evaluate the nonlinear relationship between particle 
gluing production parameters and IB. Tiryaki et  al. [13] 
established an artificial neural network (ANN) model to 
predict the effects of adhesive and compression time on 
IB of Oriental beech using polyvinyl acetate adhesives. 
The results showed that mean absolute percentage error 
between the predicted results of the ANN model and 
the experimental values was 2.5%. However, the ANN 
model training is time-consuming and easy to fall into 
locally optimal solution [14]. Yang et al. [15] established a 
mathematical model between the mechanical properties 
of PB and 23 production process parameters of PB such 
as moisture content and glue amount based on principal 
component regression analysis and random forest (RF), 
and determined the relationship between the production 
process parameters of PB and the mechanical proper-
ties, such as IB and bending strength. However, under the 
coupling effect of various factors, excessive multidimen-
sionality would lead to excessive fitting of the model, and 
it could limit the upper limit of prediction accuracy [16].

Support vector regression (SVR) is an application of 
support vector machine (SVM) to regression problems 
[17]. SVM is to solve the sample distance hyperplane 

maximization problem, and SVR principle transforms it 
into a structured risk minimization problem [18]. SVR 
can be applied to nonlinear model modeling, which has 
the advantages of simple structure and strong generali-
zation ability [19–21], and it has successfully addressed 
the issues of regression forecasting in many areas. In 
terms of wood-based panels, Gao et  al. [22] used SVR 
algorithm to establish a model to predict the fiber qual-
ity of medium density fiberboard with the parameters 
of conveyer screw revolution speed, accumulated chip 
height, and compared with the linear prediction model. 
The prediction results showed that the mean absolute 
error (MAE), mean relative error (MRE), root mean 
square error (RMSE) and Theil’s inequality coeffi-
cient (TIC) of the SVR model were reduced by 92.19%, 
92.36%, 87.29% and 87.21% compared with the mixed 
logistic regression (MLR) linear prediction model. The 
excellent model prediction results show that SVR algo-
rithm can be applied to the prediction of panel produc-
tion parameters.

Grey relation analysis (GRA) mainly describes the 
relationship between the attributes of each variable by 
searching the Grey relational grade (GRG), and then 
determines the correlation degree of the influence of 
each variable on the target [23]. By utilizing GRA, the 
correlation between the production parameters of parti-
cle gluing and IB of PB was compared, and the produc-
tion parameters with less correlation with IB of PB were 
screened out, so as to improve the upper limit of model 
prediction.

This study intended to establish the relationship 
between eight particle gluing production parameters 
including core particle discharge speed (fcore) in belt scale, 
surface particle discharge speed (fsurface) in belt scale, flow 
rate of core particle glue (vcore) from multi-pump dosing 
system, flow rate of surface particle glue (vsurface) from 
multi-pump dosing system, pressure on core particle 
gluing (pcore) from atomization spray head, pressure on 
surface particle gluing (psurface) from atomization spray 
head, current for core particle gluing (Icore) in blender, 
and current for surface particle gluing (Isurface) in blender 
and IB of PB. First, by GRA, the production parameters 
with low correlation with IB were screened to improve 
the upper limit of model prediction. Second, the nonlin-
ear regression prediction model of particle gluing pro-
duction parameters and IB was established using SVR. 
Third, the prediction accuracy of the model was tested 
by comparing the predicted values with the experimental 
values. Finally, the influence of particle gluing production 
parameters on IB of PB was evaluated according to the 
model prediction results. Since the real PB production 
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is an extremely complex process, it is a big challenge to 
optimize the PB production parameters. According to 
the literature review, this work is unique, because the 
relationships between particle gluing parameters and IB 
of PB were initially analyzed and controlled using GRA 
and SVR algorithms with a big data.

Experimental
Materials
In this study, the test data were collected in a real PB pro-
duction line with an annual yield of 250,000 m3. In this 
experiment, pine, fruit and miscellaneous wood were 
used as main raw materials to produce PB with a size of 
2440  mm × 1550  mm × 18  mm. The produced PB with-
out sanding and cooling process were examined and ana-
lyzed in this study.

In the production process, pine, fruit, and miscellane-
ous wood particles were mixed at a weight ratio of 2:2:1 
for processing core and surface particles. The mixed 
raw wood materials were converted into core particles 
and surface particles through chipping, flaking, drying, 
screening and sifting processes, and then mixed with 
adhesives and other additives to conduct particle gluing. 
Among them, the urea–formaldehyde resins were used 
in the particleboard production. The temperature of the 
adhesive was maintained at about 25 °C before sizing, the 
potential of hydrogen value of the adhesive was main-
tained between 8.5 and 9.0, and the viscosity of adhesive 
measured to be 30–40 s at 25 ℃ using the T-4 Viscosity 
Cup Method. The NDJ-5 viscometer, produced by Lichen 
in China, was used in the T-4 Viscosity Cup Method. The 
production parameters before particle gluing are shown 
in Table 1.

Experimental equipment, parameters, and testing
Main working process of gluing equipment
The main accessories and working principle of glu-
ing equipment for core and surface particles are the 
same. The main components are shown in Fig.  1. The 

multi-pump dosing system (1) sends the adhesive to 
the atomization spray head (3) at a certain flow rate. By 
controlling the atomization spray head (3) using the air 
pressure pump (2), the adhesive is sprayed into the inte-
rior of the blender (4) in the form of “fog umbrella”. At 
the same time, the particles are continuously transported 
to the belt scale (5) then to the blender (4) for full glu-
ing. Finally, the particles are discharged uniformly by the 
micro-computer controller (6).

In Fig. 1, the adhesive flow rate recorded by the multi-
pump dosing system (1); the pressure value of atomiza-
tion spray head (3) is shown by the pressure gauge on 
the air pressure pump (2); weighing and calculating par-
ticle feeding speed by the belt scale (5); the micro-com-
puter controller (6) real-time displays the current in the 
blender (4).

Equipment parameters of blender
The blender used in the experiment was produced by 
IMAL–PAL, Italy. The internal picture of the blender is 
shown in Fig. 2, and blender parameters are listed in Table 2.

Table 1  Production parameter information before sizing

Name value Unit

Core particle size 15 × 3 × 0.4 – 45 × 10 × 0.6 mm

Surface particle size 3 × 0.5 × 0.3 – 15 × 1.5 × 0.4 mm

Dry moisture content 1.5–2.5 %

Surface emulsion 0.75 ± 0.02 %

Core paraffin emulsion 0.57 ± 0.02 %

Surface curing agent 2 ± 0.02 %

Core curing agent 3 ± 0.04 %

Surface water 10 ± 0.05 %

Fig. 1  Major components of PB gluing: 1. multi-pump dosing 
system; 2. air pressure pump; 3. atomization spray head; 4. blender; 5. 
belt scale; 6. micro-computer controller

Fig. 2  Internal structure of the blender in particle gluing section
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Test method
The IB of PB was tested by taking samples from plain 
PB after 48 h conditioning. The test method of IB in this 
study followed the standard of GB/T 17,657–2013 Test 
methods of evaluating the properties of wood-based pan-
els and surface decorated wood-based panels [24]. The 
Mod.IB700 testing machine, produced by IMAL–PAL in 
Italy, was used in this study. The specimen with a size of 
50  mm × 50  mm × 18  mm was placed in a conditioning 

chamber with a temperature of 20 ± 2  °C and a relative 
humidity of 65 ± 5% for equilibrating samples to a con-
stant moisture content before the testing. The fracture 
specimen after IB tests is shown in Fig. 3.

To ensure that the relationship between the particle 
gluing production parameters and the IB of PB is not 
affected by the production parameters of other processes, 
the key production parameters of other processes after 
gluing are required to be constant or stable in a certain 
range. the 905 groups of sample data that meet the above 
requirements are used for modeling.

Methods
Grey relation analysis
GRA analysis process is to unify the data to an approxi-
mate range and calculate the grey relational grade 
between parameters through the data change trend of 
each parameter [25]. To reduce the absolute numeri-
cal difference of data caused by different dimensions of 
parameters, normalization is needed before the GRA 
analysis. Normalization usually uses min–max normali-
zation or mean normalization in GRA [26]. This study 

Table 2  Blender parameters

Parameter name Blender for 
core particles

Blender for 
surface particles

Unit

Power 90 110 kW

Nominal current 159 201 A

Max throughput 12,000 22,000 kg/h

Chamber length 3500 4500 mm

Chamber inner Diameter 700 850 mm

Chamber volume 1350 2552 L

Shaft rotation 520 416 r/min

Mixing tool rim speed 19 18.5 m/s Fig. 3  Fracture position diagram of specimens after IB tests

selected the process of averaging data, as shown in the 
following equation:

where x(k) is a vector of normalized parameters, k is the 
kth data in normalized parameters vector, x is the mean 
value of data in normalized parameter vector. Grey rela-
tion analysis is shown in the following equation:

(1)f (x(k)) =
x(k)

x
= y(k), x =

1

n

n
∑

k=1

x(k)

(2)ζi(k) =
mini mink

∣

∣x0(k)− xi(k)
∣

∣+ ρ ·maxi maxk
∣

∣x0(k)− xi(k)
∣

∣

∣

∣x0(k)− xi(k)
∣

∣+ ρ ·maxi maxk
∣

∣x0(k)− xi(k)
∣

∣

where x0(k) is a vector of target parameters, xi(k) is the 
ith parameter vector, and ρ is discrimination coefficient, 
usually the smaller the resolution coefficient, the better 
the resolution, typically 0.5 [27].

Support vector regression algorithm
SVR has advantages in small sample, non-linear and 
high-dimensional pattern recognition [28]; therefore, 
SVR has excellent prediction effect between particle glu-
ing production parameters and IB of PB.

Given a training sample set on T = {(x1, y1), (x2, y2),

· · ·, (xn, yn)} a feature space, where xi ∈ Rn is the input sam-
ple vector, yi ∈ Rn is the corresponding output sample, and n 
is the number of training data. Regression function as shown 
in the following equation:

where ω ∈ Rn represents the weight vector, ϕ(x) repre-
sents the nonlinear mapping function, and b represents 
the deviation, so as to obtain the minimum structural risk 
of the regression function. The optimal solution of SVR 
regression problem can be obtained by introducing relax-
ation variable ξi ≥ 0, ξ∗i ≥ 0 [29], as shown in Eqs. 4–5:

(3)f (x) = ωTϕ(x)+ b
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where C is the penalty factor, indicating the correla-
tion between the empirical error of the model and 
the smoothness. ε is a prescribed parameter, and the 
Lagrange multiplier is used to solve the bi-objective opti-
mization problem. By introducing the Lagrange multi-
plier ( ai and a∗i  ) [30], the regression function is obtained 
by dual solution as shown by Eq. 6,

Introducing ϕ(x)Tϕ(x) in the kernel function K (xi, xj) 
substitution, as shown by Eq. 7,

Since the Gaussian Radial Basis Function (RBF) has 
good generalization, nonlinear prediction performance 
and less adjustment parameters [31], this paper selects 
RBF as the kernel function. RBF function as shown by 
Eq. 8,

To improve the prediction accuracy of the model, it is 
necessary to optimize the penalty coefficient “C” and the 
width of Gaussian RBF kernel “σ” [32]. In this paper, the 
5-folder cross-validation was used to conduct grid search 
the training set samples.

The GRA​–SVR prediction model for IB
Step 1: GRA correlation analysis
Through the GRA analysis of fcore, fsurface, vcore, vsurface, 
pcore, psurface, Icore and Isurface on the grey relational grade 
of IB, the variables with low grey relational grade were 
screened out.

Step 2: Normalization of sample data
The normalization of sample data was to scale the data in 
the interval [0, 1], remove the unit limitation of sample 
data, and transform it into dimensionless pure values, so 
that different units can be maintained stable in the train-
ing process of the SVR model.

(4)min
(ω,b,ξ)

1

2
�ω�2 + C

n
∑

i=1

(ξi + ξ∗i )

(5)s.t.


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n
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(7)f (x) =
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(8)K (xi, xj) = exp

(

−
∥

∥xi − xj
∥

∥

2σ 2

)

Step 3: Optimization of grid search parameters by K‑fold 
cross validation
The grid search trains all the candidate parameters by 
the exhaustive method. Combined with the K-fold cross 
validation, the sample data set of the validation set was 
divided into k subsets and each subset performed the val-
idation set once. The subset was used as the training set, 
and the validation K times were trained repeatedly until 
the penalty coefficient “C” of the minimum mean square 
error and the width “σ” of the Gaussian RBF kernel were 
selected as the optimal parameters.

Step 4: Constructing SVR nonlinear prediction model
The SVR prediction model for IB was established through 
the determined optimal parameters, and the model can 
predict each input. The SVR prediction models imported 
from the training set and the testing set were, respec-
tively, used for prediction. The predicted values of the 
model output were compared with the experimental 
values, and the deviation of the model prediction was 
analyzed. The GRA–SVR prediction model diagram, as 
shown in Fig. 4.

Step 5: Evaluation of GRA–SVR model
MAE, MRE, RMSE and TIC were used to analyze the 
convergence of predicted values of GRA–SVR model 
to experimental values, and then the prediction perfor-
mance of the model was accurately evaluated.
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xmax − xmin
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∣
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∣

n
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n
∑

i=1

∣

∣

∣

yi−ŷi
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∣
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n
∑
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n
∑
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Results and discussion
Grey relation analysis production parameters of particle 
gluing
The grey relational grade results of particle gluing produc-
tion parameters of fcore, fsurface, vcore, vsurface, pcore, psurface, Icore 
and Isurface on IB calculated by GRA are shown in Fig. 5. The 
order of correlation between the production parameters of 

particle gluing and the IB of PB can be obtained intuitively: 
vcore > fcore > pcore > psurface > vsurface > fsurface > Icore > Isurface.

On the one hand, the grey relational grades of vcore, fcore 
and pcore on IB were 0.773, 0.771 and 0.745, respectively, 
which are higher than that of psurface, vsurface and fsurface on IB. 
It can be proved that the production parameters of core par-
ticle gluing have higher influence on the IB of PB than that 
of surface particle gluing. On the other hand, because the 
grey relational grades of Icore and Isurface to IB were 0.697 and 
0.697, respectively, which were far lower than other produc-
tion parameters, it was proved that Icore and Isurface had little 
effect on IB. The input of these two parameters into SVR 
regression prediction model for training would lead to lower 
prediction accuracy of the model. Therefore, only param-
eters of fcore, fsurface, vcore, vsurface, pcore and psurface were taken 
into account for the training of the SVR model.

Regression prediction of GRA–SVR algorithm
The prediction model of particle gluing process param-
eters and IB using GRA–SVR was trained. The input 
variables were fcore, fsurface, vcore, vsurface, pcore, psurface, and 
the output variable was IB. The total experimental data 
obtained by the experiment was 905 groups, of which 
724 groups of data were used as a training set to build the 
model and 181 groups of data as a validation set to verify 

Fig. 4  Flow chart of the GRA–SVR regression prediction model

Fig. 5  GRA histogram of particle gluing processing parameters and 
IB of PB
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the model. SVR parameters were optimized by 5-CV. 
The penalty coefficient “C” was 0.71, and the width “σ” 
of Gaussian RBF kernel was 8. Figure  6 shows that the 
prediction IB values obtained by the training set into the 
nonlinear regression prediction model were compared 
with the experimental values. The predicted values of 
the model in the image were highly consistent with the 
experimental values, which proved that the model had 
appealing fitting.

To accurately evaluate the prediction accuracy of the 
nonlinear prediction model of particle gluing produc-
tion parameters and IB, the scatter distribution of the 
predicted and experimental values of the training set 

and the testing set was plotted using the image analysis 
model as shown in Fig.  7. If the predicted values of the 
model match the experimental values completely, all data 
points would be on the main diagonal. Figure  7a shows 
that the sample points of the training set and the testing 
set are very close to the main diagonal. Figure 7b shows 
that the relative deviation between the predicted values 
and the experimental values are small. It is indicated that 
the IB of PB model using GRA–SVR has good prediction 
accuracy.

As shown in Fig. 8, 91.16% testing data were within the 
0–10% relative deviation between the predicted values 
and the experimental values, 28.28% testing data were 
ranged from 10 to 20% relative deviation, and 0.55% test-
ing data were in 20–30% relative deviation. It was shown 
that the GRA–SVR prediction model of IB of PB had 
excellent accuracy.

Prediction performance evaluation of GRA–SVR algorithm
As shown in Fig.  8, although the GRA–SVR model had 
high accuracy, there was still 8.83% of the relative devia-
tion of the predicted value between 10 to 30%. In addition 
to the nonlinear model itself, the error of data collection 
would also affect the accuracy of the model. Dai et  al. 
[33] believed that vertical density profile (VPD) had a 
great influence on the IB of PB. Jin et  al. [34] explored 
the regression relationship between IB and density of 
PB through the laminated beam theory, and the results 
showed that there was a positive correlation between IB 
and density of PB.

To explore the influence of VPD of PB on the predic-
tion accuracy of GRA–SVR model, this study conducted 

Fig. 6  Comparison between the experimental and predicted values 
of the training set based on the GRA–SVR model

Fig. 7  Comparison and relative deviation between predicted and experimental values. a Comparison between predicted and experimental values. 
b Relative deviation
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six VPD tests on a randomly selected specimen, and the 
results are shown in Fig. 9. It could be seen from the fig-
ure that with the increase of PB thickness, the variation 
trend of density in the vertical direction was a profile of 
’M’. The density variation trend of the middle layer of PB 

was relatively flat, but there was still ± 30 kg/m3 density 
fluctuation. Because the density of particleboard was 
positively correlated with IB, if the fracture position of 
the specimen changes during IB tests, it would lead to the 
deviation of IB test results. This indicates that the more 
uniform density of PB intermediate layer, the higher the 
accuracy of GRA–SVR model can be achieved.

The training set sample data and the testing set sam-
ple data were inputted into the model for prediction, 
and MAE, MRE, RMSE, and TIC were used to evalu-
ate the prediction performance of the model. As shown 
in Table  3, the results showed that the model errors 
were small, indicating the model had good prediction 
performance.

Application of the GRA–SVR model
Manufacturers would change PB production accord-
ing to different order requirements. The particle dis-
charge speed in the belt scale in the particle gluing 
process would change with the change of PB yield. The 

Fig. 8  Proportion of predicted values of the GRA–SVR model within 
relative deviations

Fig.9  Results of VPD tests for IB test specimens by VPD analyzer

Table 3  Prediction error results of GRA–SVR

Sample data MAE MRE RMSE TIC

Training 0.004 0.008 0.011 0.011

Testing 0.008 0.017 0.013 0.014

Table 4  Search range and optimization results of parameters

Parameters fcore (kg/min) fsurface (kg/min) vcore (L/min) vsurface (L/min) pcore
(bar)

psurface
(bar)

Range 325 100 to 215 24 to 54 16 to 38 1.2 to 2.4 1.0 to 3.3

Results 325 154.1 37.5 27 1.9 1.8
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GRA–SVR model in this study could change the produc-
tion parameters of particle gluing according to the actual 
production demand, so as to improve the IB of PB.

Assuming that fcore was adjusted to 325 kg/min to meet 
the production demand of PB, the production param-
eters of particle gluing are predicted. The range of par-
ticle gluing production parameters is shown in Table  4. 
The prediction process took fcore = 325 kg/min as a con-
stant, and the other five production parameters used 100 
as the step length to bring into the GRA–SVR model for 
the grid search optimization. When the value of particle 
gluing production parameters was fsurface = 154.1 kg/min, 
vcore = 37.5 L/min, vsurface = 27 L/min, pcore = 1.9 bar, psur-

face = 1.8 bar, the optimal value of IB of PB was 0.55 MPa.
On the other hand, PB manufacturers would reduce 

production costs by reducing adhesive consumption 
according to the actual situation of orders. Reducing the 
adhesive consumption of PB would lead to the decrease 
of IB [35]. The GRA–SVR model was used to predict the 
production parameters of particle gluing after reducing 
the flow rate of the particle glue from multi-pump dosing 
system, which could ensure the production of PB under 
the minimum IB for meeting the enterprise standards. 
Therefore, the modeling and optimization of particle glu-
ing processing parameters and IB of PB are conducive to 
reducing the production cost of PB and improving the 
quality of products.

Conclusions
In this study, a nonlinear regression prediction model 
between particle gluing processing parameters and IB of 
PB was developed using GRA–SVR. The six input param-
eters of fcore, fsurface, vcore, vsurface, pcore and psurface were 
used to predict IB, which can quantitatively evaluate the 
influence of particle gluing production parameters on 
IB of PB and provide a new method for particle gluing 
process.

(1) GRA was used to analyze the grey relational grade 
between the particle gluing parameters of fcore, fsurface, 
vcore, vsurface, pcore, psurface, Icore and Isurface and IB of PB. 
The results showed that the core particle gluing param-
eters had a higher proportion of the influence on the 
IB strength compared with the surface particle gluing 
parameters. Icore and Isurface had smaller influence on IB 
compared with other parameters.

(2) The predicted IB values obtained using the non-
linear regression prediction model were compared with 
experimental values. The results showed that the pre-
dicted values were in good agreement with the experi-
mental values, and the relative deviations of 91.16% data 
points were in the range of 0–10%, indicating that the 

particle gluing model using GRA–SVR had satisfactory 
regression prediction accuracy.

(3) The sample data of training set were used by the 
GRA–SVR nonlinear regression prediction model to pre-
dict particleboard IB and the production parameters of 
particle gluing. The evaluation results showed that MAE 
was 0.004, MRE was 0.008, RMSE was 0.011, and TIC 
was 0.011, proving that the GRA–SVR model had good 
fitting. The GRA–SVR regression prediction model was 
used to predict the testing set sample data. The evalua-
tion results showed that MAE was 0.008, MRE was 0.017, 
RMSE was 0.013, and TIC was 0.014, proving that the 
application of GRA–SVR model has excellent accuracy.

Using the GRA–SVR regression prediction model, IB 
of PB can be predicted in real time according to the pro-
duction parameters of particle gluing. The manufacturers 
would adjust particle discharge speed in the belt scale and 
flow rate of particle glue from multi-pump dosing system 
in the process of particle gluing according to the actual 
production demands, so as to improve the yield of PB or 
reduce the adhesive consumption. The GRA–SVR model 
was used to predict the production parameters of parti-
cle gluing after the adjustment, so that the IB of PB meets 
the requirements of enterprise standards. The GRA–SVR 
modeling and prediction are helpful to guide the produc-
tion practice of particleboards and has promising appli-
cation future for efficient and stable production in the 
particleboard manufacturing industry.
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