Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Reactivity of syringyl quinone methide intermediates in dehydrogenative polymerization I: high-yield production of synthetic lignins (DHPs) in horseradish peroxidase-catalyzed polymerization of sinapyl alcohol in the presence of nucleophilic reagents

Abstract

It is known that the conventional dehydrogenative polymerization of sinapyl alcohol (S-alc) gave syringyl synthetic lignins (S-DHPs), but in extremely low yields. In this article, to examine the contribution of syringyl quinone methide intermediates (S-QM) on S-DHP production, horseradish peroxidase (HRP)-catalyzed dehydrogenative polymerization of S-alc was carried out in the presence of nucleophilic reagents that promote the rearomatization of S-QM. First, the HRP-catalyzed polymerization of sinapyl alcohol γ-O-β-D-glucopyranoside (isosyringin, iso-S), which allows us to monitor the polymerization process in a homogeneous aqueous phase, was utilized for screening of a nucleophile used as an S-QM scavenger. Monitoring of iso-S polymerization in the presence of various nucleophilic reagents by UV spectroscopy and gel permeation chromatography with photodiode array detection (GPC-PDA) revealed a high ability of azide ion to convert oligomeric S-QM efficiently to S-DHP. Accordingly, azide ion was utilized as an S-QM scavenger in HRP-catalyzed polymerization of S-alc, which resulted in high-yield production of S-DHPs (83%), as expected. The 1H-, 13C-, and 2D-HSQC NMR investigations on the resulting S-DHPs clearly demonstrated that azide ion efficiently performed nucleophilic additions to the C-α of S-QM during the polymerization. These results provide experimental proof that the low reactivity of S-QM with nucleophiles (such as water, phenolic, and aliphatic hydroxyl groups) in the conventional polymerization system critically impedes the production of S-DHPs from S-alc.

References

  1. Freudenberg K (1965) Lignin. Its constitution and formation from p-hydroxycinnamyl alcohols. Science 148:595–600

    Article  CAS  PubMed  Google Scholar 

  2. Sarkanen KV (1971) Precursors and their polymerization. In: Sarkanen KV, Ludwig CH (eds) Lignins: occurrence, formation, structure and reactions. Wiley, New York, pp 95–163

    Google Scholar 

  3. Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63

    Article  CAS  Google Scholar 

  4. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  5. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  6. Monties B (2005) Biological variability of lignins. Cell Chem Technol 39:341–367

    CAS  Google Scholar 

  7. Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831

    Article  CAS  Google Scholar 

  8. Ralph J, Brunow G, Harris PJ, Dixon RA, Schatz PF, Boerjan W (2008) Lignification: are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication? Recent Adv Polyphenol Res 1:36–66

    Article  CAS  Google Scholar 

  9. Freudenberg K, Hübner HH (1952) Hydroxycinnamyl alcohols and their dehydrogenation polymers. Chem Ber 85:1181–1191

    Article  CAS  Google Scholar 

  10. Yamasaki T, Hata K, Higuchi T (1976) Dehydrogenation polymer of sinapyl alcohol by peroxidase and hydrogen peroxide. Mokuzai Gakkaishi 22:582–588

    CAS  Google Scholar 

  11. Faix O, Besold G (1978) Preparation and characterization of dehydrogenation polymers of p-hydroxycinnamic alcohols (DHPs) particularly made from pure 4-hydroxyphenyl-(H-), guajacyl-(G-) and syringyl-(S-) propane polymers. I. Elemental analysis and determination of functional groups. Holzforschung 32:1–7

    Article  CAS  Google Scholar 

  12. Weymouth N, Dean J FD, Eriksson KEL, Morrison WH III, Himmelsbach DS, Hartley RD (1993) Synthesis and spectroscopic characterization of p-hydroxyphenyl, guaiacyl and syringyl lignin polymer models (DHPs). Nord Pulp Pap Res J 8:344–349

    Article  CAS  Google Scholar 

  13. Sterjiades R, Dean JFD, Gamble G, Himmelsbach DS, Eriksson KEL (1993) Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures. Reactions with monolignols and lignin model compounds. Planta (Berl) 190:75–87

    Article  CAS  Google Scholar 

  14. Yoshida S, Chatani A, Tanahashi M, Honda Y, Watanabe T, Kuwahara M (1998) Preparation of synthetic lignin by manganese peroxidase of Bjerkandera adusta in organic solvents. Holzforschung 52:282–286

    Article  CAS  Google Scholar 

  15. Tobimatsu Y, Takano T, Kamitakahara H, Nakatsubo F (2008) Studies on the dehydrogenative polymerizations of monolignol β-glycosides. Part 3: Horseradish peroxidase-catalyzed polymerizations of triandrin and isosyringin. J Wood Chem Technol 28: 69–83

    Google Scholar 

  16. Ostergaard L, Teilum K, Mirza O, Mattsson O, Petersen M, Welinder KG, Mundy J, Gajhede M, Henriksen A (2000) Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol Biol 44:231–243

    Article  CAS  PubMed  Google Scholar 

  17. Nielsen KL, Indiani C, Henriksen A, Feis A, Becucci M, Gajhede M, Smulevich G, Welinder KG (2001) Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2. Biochemistry 40:11013–11021

    Article  CAS  PubMed  Google Scholar 

  18. Aoyama W, Sasaki S, Matsumura S, Mitsunaga T, Hirai H, Tsutsumi Y, Nishida T (2002) Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol. J Wood Sci 48:497–504

    Article  CAS  Google Scholar 

  19. Sasaki S, Nishida T, Tsutsumi Y, Kondo R (2004) Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in β-O-4 linkage. FEBS Lett 562:197–201

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi T, Taguchi H, Shigematsu M, Tanahashi M (2005) Substituent effects of 3,5-disubstituted p-coumaryl alcohols on their oxidation using horseradish peroxidase-H2O2 as the oxidant. J Wood Sci 51:607–614

    Article  CAS  Google Scholar 

  21. Tanahashi M, Takeuchi H, Higuchi T (1976) Dehydrogenative polymerization of 3,5-substituted p-coumaryl alcohols. Wood Res 61:44–53

    CAS  Google Scholar 

  22. Tanahashi M, Higuchi T (1990) Effect of the hydrophobic regions of hemicelluloses on dehydrogenative polymerization of sinapyl alcohol. Mokuzai Gakkaishi 36:424–428

    CAS  Google Scholar 

  23. Takano T, Tobimatsu Y, Hosoya T, Hattori T, Ohnishi J, Takano M, Kamitakahara H, Nakatsubo F (2006) Studies on the dehydrogenative polymerizations of monolignol β-glycosides. Part 1. Syntheses of monolignol β-glycosides, (E)-isoconiferin, (E)-isosyringin, and (E)-triandrin. J Wood Chem Technol 26:215–22

    Article  CAS  Google Scholar 

  24. Tobimatsu Y, Takano T, Kamitakahara H, Nakatsubo F (2006) Studies on the dehydrogenative polymerizations of monolignol β-glycosides. Part 2: Horseradish peroxidase-catalyzed dehydrogenative polymerization of isoconiferin. Holzforschung 60:513–518

    Article  CAS  Google Scholar 

  25. Tobimatsu Y, Takano T, Kamitakahara H, Nakatsubo F (2008) Studies on the dehydrogenative polymerizations (DHPs) of monolignol gb-glycosides: part 4. Horseradish peroxidase-catalyzed copolymerization of isoconiferin and isosyringin. Holzforschung 62: 495–500

    Article  CAS  Google Scholar 

  26. Tobimatsu Y, Takano T, Kamitakahara H, Nakatsubo F (2008) Studies on the dehydrogenative polymerization of monolignol β-glycosides: part 5. UV spectroscopic monitoring of horseradish peroxidase-catalyzed polymerization of monolignol glycosides. Holzforschung 62:501–507

    Article  CAS  Google Scholar 

  27. Tobimatsu Y, Takano T, Kamitakahara H, Nakatsubo F (2010) Studies on the dehydrogenative polymerizations of monolignol β-glycosides. Part 6. Monitoring of horseradish peroxidase-catalyzed polymeriation of monolignol glycosides by GPC-PDA. Holzforschung (in press)

  28. Bolton JL, Sevestre H, Ibe BO, Thompson JA (1990) Formation and reactivity of alternative quinone methides from butylated hydroxytoluene: possible explanation for species-specific pneumotoxicity. Chem Res Toxicol 3:65–70

    Article  CAS  PubMed  Google Scholar 

  29. Bolton JL, Valerio LGJ, Thompson JA (1992) The enzymic formation and chemical reactivity of quinone methides correlate with alkylphenol-induced toxicity in rat hepatocytes. Chem Res Toxicol 5:816–822

    Article  CAS  PubMed  Google Scholar 

  30. Tobimatsu Y, Takano T, Kamitakahara H, Nakatsubo F (2008) Azide ion as a quinone methide scavenger in the horseradish peroxidase-catalyzed polymerization of sinapyl alcohol. J Wood Sci 54:87–89

    Article  CAS  Google Scholar 

  31. Quideau S, Ralph J (1992) Facile large-scale synthesis of coniferyl, sinapyl, and p-coumaryl alcohol. J Agric Food Chem 40:1108–1110

    Article  CAS  Google Scholar 

  32. Nakatsubo F, Sato K, Higuchi T (1975) Synthesis of guaiacylglycerol-β-guaiacyl ether. Holzforschung 29:165–168

    Article  CAS  Google Scholar 

  33. Sipilä J, Syrjanen K (1995) Synthesis and 13C NMR spectroscopic characterization of six dimeric arylglycerol-β-aryl ether model compounds representative of syringyl and p-hydroxyphenyl structures in lignins. On the aldol reaction in β-ether preparation. Holzforschung 49:325–333

    Article  Google Scholar 

  34. Ralph J, Young RA (1983) Stereochemical aspects of addition reactions involving lignin model quinone methides. J Wood Chem Technol 3:161–181

    Article  CAS  Google Scholar 

  35. Brunow G, Sipilä J, Makela T (1989) On the mechanism of formation of noncyclic benzyl ethers during lignin biosynthesis. Part 1. The reactivity of β-O-4-quinone methides with phenols and alcohols. Holzforschung 43:55–59

    Article  CAS  Google Scholar 

  36. Hauteville M, Lundquist K, VonUnge S (1986) NMR studies of lignins. 7. Proton NMR spectroscopic investigation of the distribution of erythro and threo forms of β-O-4 structures in lignins. Acta Chem Scand B 40:31–35

    Article  Google Scholar 

  37. Toikka M, Sipilä J, Teleman A, Brunow G (1998) Lignin-carbohydrate model compounds. Formation of lignin-methyl arabinoside and lignin-methyl galactoside benzyl ethers via quinone methide intermediates. J Chem Soc Perkin Trans 1:3813–3818

    Article  Google Scholar 

  38. Ramakrishnan K, Fisher J (1983) Nucleophilic trapping of 7,11-dideoxyanthracyclinone quinone methides. J Am Chem Soc 105: 7187–7188

    Article  CAS  Google Scholar 

  39. Fisher J, Abdella BR, McLane KE (1985) Anthracycline antibiotic reduction by spinach ferredoxin-NADP+ reductase and ferredoxin. Biochemistry 24:3562–3571

    Article  CAS  PubMed  Google Scholar 

  40. Awad HM, Boersma MG, Vervoort J, Rietjens IMCM (2000) Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. Arch Biochem Biophys 378:224–233

    Article  CAS  PubMed  Google Scholar 

  41. Al Kazwini AT, O’Neill P, Cundall RB, Adams GE, Junino A, Maignan J (1992) Direct observation of the reaction of the quinonemethide from 5,6-dihydroxyindole with the nucleophilic azide ion. Tetrahedron Lett 33:3045–3048

    Article  Google Scholar 

  42. Novak M, Kayser KJ, Brooks ME (1998) Azide and solvent trapping of electrophilic intermediates generated during the hydrolysis of N-(sulfonatooxy)-N-acetyl-4-aminostilbene. J Org Chem 63: 5489–5496

    Article  CAS  Google Scholar 

  43. Richard JP, Toteva MM, Crugeiras J (2000) Structure-reactivity relationships and intrinsic reaction barriers for nucleophile additions to a quinone methide: a strongly resonance-stabilized carbocation. J Am Chem Soc 122:1664–1674

    Article  CAS  Google Scholar 

  44. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259

    Article  CAS  PubMed  Google Scholar 

  45. DeRycker J, Halliwell B (1978) Oxidation of thiol compounds by catalase and peroxidase in the presence of manganese (II) and phenols. Biochem Soc Trans 6:1343–1345

    CAS  Google Scholar 

  46. Burner U, Obinger C (1997) Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase. FEBS Lett. 411:269–274

    Article  CAS  PubMed  Google Scholar 

  47. Faix O, Lange W, Besold G (1981) Molecular weight determinations of DHP’s from mixtures of precursors by steric exclusion chromatography (HPLC). Holzforschung 35:137–140

    Article  CAS  Google Scholar 

  48. Cathala B, Saake B, Faix O, Monties B (1998) Evaluation of the reproducibility of the synthesis of dehydrogenation polymer models of lignin. Polym Degrad Stab 59:65–69

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Takano.

Additional information

This report follows the previous rapid communication “Azide ion as a quinone methide scavenger in the horseradish peroxidase-catalyzed polymerization of sinapyl alcohol”, J Wood Sci (2008) 54:87–89

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobimatsu, Y., Takano, T., Kamitakahara, H. et al. Reactivity of syringyl quinone methide intermediates in dehydrogenative polymerization I: high-yield production of synthetic lignins (DHPs) in horseradish peroxidase-catalyzed polymerization of sinapyl alcohol in the presence of nucleophilic reagents. J Wood Sci 56, 233–241 (2010). https://doi.org/10.1007/s10086-009-1086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-009-1086-5

Key words