Banik RL (2015) Harvesting techniques. In: Liese W, Köhl M, eds. Bamboo: The plant and its uses. Springer: cham. pp 193–226.
Okahisa Y, Kojiro K, Kiryu T, Oki T, Furuta Y, Hongo C (2018) Nanostructural changes in bamboo cell walls with aging and their possible effects on mechanical properties. J Mater Sci 53:3972–3980
Article
CAS
Google Scholar
Kiryu T, Matsuda N, Kojiro K, Furuta Y (2017) The Mechanism of improvement of physical properties of moso bamboo (Phyllostachys pubescens) with increasing age II. Mokuzai Gakkaishi 63:14–20 (in Japanese)
Article
CAS
Google Scholar
Lybeer B, Van Acker J, Goetghebeur P (2006) Variability in fibre and parenchyma cell walls of temperate and tropical bamboo culms of different ages. Wood Sci Technol 40:477–492
Article
CAS
Google Scholar
Nakajima M, Furuta Y, Ishimaru Y, Ohkoshi M (2009) Cooling set and its recovery in water-saturated bamboo under large bending deformation. J Wood Sci 55:100–106
Article
Google Scholar
Zhan T, Jiang J, Lu J, Zhang Y, Chang J (2018) Influence of hygrothermal condition on dynamic viscoelasticity of Chinese fir (Cunninghamia lanceolata). Part 1: moisture adsorption. Holzforschung 72:567–578
Article
CAS
Google Scholar
Zhan T, Jiang J, Lu J, Zhang Y, Chang J (2019) Frequency-dependent viscoelastic properties of Chinese fir (Cunninghamia lanceolata) under hygrothermal conditions. Part 2: moisture desorption. Holzforschung 73:737–746
Article
CAS
Google Scholar
Wan G, Frazier T, Jorgensen J, Zhao B, Frazier C (2018) Rheology of transgenic switchgrass reveals practical aspects of biomass processing. Biotechnol Biofuels 11:57
Article
PubMed
PubMed Central
Google Scholar
Olsson A-M, Salmén L (1997) The effect of lignin structure on the viscoelastic properties of wood. Nord Pulp Pap Res J 12:140–144
Article
CAS
Google Scholar
Salmén L (1984) Viscoelastic properties of in situ lignin under water-saturated conditions. J Mater Sci 19:3090–3096
Article
Google Scholar
Furuta Y, Okuyama T, Kojiro K, Miyoshi Y, Kiryu T (2014) Temperature dependence of the dynamic viscoelasticity of bases of Japanese cypress branches and the trunk close to the branches saturated with water. J Wood Sci 60:249–254
Article
CAS
Google Scholar
Umezawa T (2010) The cinnamate/monolignol pathway Phytochem Rev 9:1–17
Article
CAS
Google Scholar
Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115:1053–1074
Article
CAS
PubMed
PubMed Central
Google Scholar
Umezawa T (2018) Lignin modification in planta for valorization. Phytochem Rev 17:1305–1327
Article
CAS
Google Scholar
Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546
Article
CAS
PubMed
Google Scholar
Tobimatsu Y, Takano T, Umezawwa T, Ralph J (2019) Solution-state multidimensional NMR of lignins: Approaches and applications. In: Fachuang L, Fengxia Y (eds) Lignin: Biosynthesis, functions and economic significance. Nova Science Publishers Inc, New York, pp 79–110
Google Scholar
Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA, Ximenes EX, Maeda J, Ralph J, Donohoe BS, Ladisch M, Chapple C (2014) Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509:376–380
Article
CAS
PubMed
Google Scholar
Tarmadi D, Tobimatsu Y, Yamamura M, Miyamoto T, Miyagawa Y, Umezawa T, Yoshimura T (2018) NMR studies on lignocellulose deconstructions in the digestive system of the lower termite Coptotermes formosanus Shiraki. Sci Rep 8:1290
Article
PubMed
PubMed Central
Google Scholar
Cesarino I, Simões MS, dos Santos BM, Fanelli A, Silva T, Romanel E (2016) Building the wall: recent advances in understanding lignin metabolism in grasses. Acta Physiol Plant 38:269
Article
Google Scholar
Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83
Article
CAS
Google Scholar
Lan W, Lu F, Regner M, Zhu Y, Rencorey J, Ralph S, Zakai U, Morreel K, Boerjan W, Ralph J (2015) Tricin, a flavonoid monomer in monocot lignification. Plant Physiol 167:1284–1295
Article
CAS
PubMed
PubMed Central
Google Scholar
Takabe K (2011) Chapter 1.1.9. In: Fukushima K, Funada R, Sugiyama J, Takabe K, Umezawa T, Yamamoto H (eds) Secondary xylem formation-introduction to biomass science-, 2nd edn. Otsu, Kaiseisha, pp 75–81
Google Scholar
Liese W, Weiner G (1996) Ageing of bamboo culms. A review Wood Sci Technol 30:77–89
Article
CAS
Google Scholar
Tsuyama T, Shimada N, Motoda T, Matsushita Y, Kijidani Y, Fukushima K, Kamei I (2017) Lignification in developing culms of bamboo Sinobambusa tootsik. J Wood Sci 63:551–559
Article
CAS
Google Scholar
Tanahashi M, Higuchi T (1990) Effect of the hydrophobic regions of hemicelluloses on dehydrogenative polymerization of sinapyl alcohol. Mokuzai Gakkaishi 36:424–428
CAS
Google Scholar
Takamura N (1968) Studies on hot pressing and drying process in production of fibreboard. III. Softening of fibre components in hot pressing of fibre mat. Mokuzai Gakkaishi 14:75–79
Google Scholar
Sasaki Y, Okuyama T (1983) Residual stress and dimensional changes on heating green wood of Cryptomeria japonica. Mokuzai Gakkaishi 29:302–307
Google Scholar
Furuta Y, Kohara M, Kanayama K (1999) Thermal-softening properties of water-swollen wood, 6: The change of thermal-softening properties due to lignification with moso bamboo [Phyllostachys pubesceus] as a model material. Mokuzai Gakkaishi 45:193–198 (in Japanese)
CAS
Google Scholar
Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T (2009) High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol 26:337–340
Article
CAS
Google Scholar
Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2012) Microscale thioacidolysis method for the rapid analysis of β-O-4 substructures in lignin. Plant Biotechnol 29:419–423
Article
CAS
Google Scholar
Yue F, Lu F, Sun R-C, Ralph J (2012) Syntheses of lignin-derived thioacidolysis monomers and their uses as quantitation standards. J Agric Food Chem 60:922–928
Article
CAS
PubMed
Google Scholar
Chuma S, Hirohashi M, Ohgama T, Kasahara Y (1990) Composite structure and tensile properties of mousou bamboo. J Soc Mater Sci Japan 39:847–851 (in Japanese)
Article
Google Scholar
Bjurhager I, Olsson A-M, Zhang B, Gerber L, Kumar M, Berglund L, Burgert I, Sundberg B, Salmen L (2010) Ultrastructure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromology 11:2359–2365
Article
CAS
Google Scholar
Brunow G, Lundquist K (2010) Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). In: Heitner H, Dimmel D, Schmidt J (eds) Lignin and lignans advances in chemistry, 1st edn. CRC Press, Boca Raton, pp 268–272
Google Scholar
Tomimura Y, Yokoi T, Terashima N (1980) Heterogeneity in formation of lignin. V. Degree of condensation in guaiacyl nucleus. Mokuzai Gakkaishi 26:37–42
CAS
Google Scholar
Baumberger S, Dole P, Lapierre C (2002) Using transgenic poplars to elucidate the relationship between the structure and the thermal properties of lignins. J Agric Food Chem 50:2450–2453
Article
CAS
PubMed
Google Scholar
Lapierre C, Pollet B, Rolando C (1995) New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res Chem Intermed 21:397–412
Article
CAS
Google Scholar
Furuta Y, Nakajima M, Nakatani T, Kojiro K, Ishimaru Y (2008) Effects of the lignin on the thermal-softening properties of the water-swollen wood. J Soc Mater Sci Japan 57:344–349 (in Japanese)
Article
CAS
Google Scholar
Okahisa-Kobayashi Y (2016) Structural analysis of lignins and hemicelluloses in mature bamboo phyllostachys bambusoides culms for comparison with immature bamboo and other grass species. Int J Biomass Renewables 5:1–11
Google Scholar
Yoshida H, Mörck R, Kringstad KP, Hatakeyama H (1987) Fractionation of kraft lignin by successive extraction with organic solvents. II. Thermal properties of kraft lignin fractions. Holzforschung 41:171–176
Article
CAS
Google Scholar
Kubo S, Uraki Y, Sano Y (1996) Thermomechanical analysis of isolated lignins. Holzforschung 50:144–150
Article
CAS
Google Scholar