Pournou A (2020) Wood deterioration by insects In: biodeterioration of wooden cultural heritage. Springer, Cham
Book
Google Scholar
Tokuda G (2019) Plant cell wall degradation in insects: recent progress on endogenous enzymes revealed by multi-omics technologist. Adv Insect Physiol 57:97–136. https://doi.org/10.1016/bs.aiip.2019.08.001
Article
Google Scholar
Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632. https://doi.org/10.1146/annurev-ento-112408-085319
Article
CAS
PubMed
Google Scholar
Ni J, Tokuda G (2013) Lignocellulose degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31:838–850. https://doi.org/10.1016/j.biotechadv.2013.04.005
Article
CAS
PubMed
Google Scholar
Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. https://doi.org/10.1038/nrmicro3182
Article
CAS
PubMed
Google Scholar
Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. https://doi.org/10.1146/annurev-ento-010814-020822
Article
CAS
PubMed
Google Scholar
Calderon-Cortes N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K (2012) Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu Rev Ecol Evol Syst 43:45–71. https://doi.org/10.1146/annurev-ecolsys-110411-160312
Article
Google Scholar
Sun J, Zhou XJ (2011) Utilization of lignocellulose-feeding insects for viable biofuels: an emerging and promising area of entomological science. In: Liu T, Kang L (eds) Recent advances in entomological research. Springer, Berlin
Google Scholar
Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MdM, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937. https://doi.org/10.1073/pnas.0805257105
Article
PubMed
PubMed Central
Google Scholar
Ke J, Laskar DD, Singh D, Chen S (2011) In situ lignocellulosic unlocking mechanism for carbohydrate hydrolysis in termites: crucial lignin modification. Biotechnol Biofuel 4:1–12. https://doi.org/10.1186/1754-6834-4-17
Article
CAS
Google Scholar
Ke J, Laskar DD, Chen S (2013) Varied lignin disruption mechanisms for different biomass substrates in lower termite. Renew Energy 50:1060–1064. https://doi.org/10.1016/j.renene.2012.08.069
Article
CAS
Google Scholar
Ceja-Navarro JA, Karaoz U, Bill M, Hao Z, White RA III, Arellano A, Ramanculova L, Filley TR, Berry TD, Conrad ME, Blackwell M, Nicora CD, Kim YM, Reardon PN, Lipton MS, Adkins JN, Pett-Ridge J, Brodie EL (2019) Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat Microbiol 4:864–875. https://doi.org/10.1038/s41564-019-0384-y
Article
CAS
PubMed
Google Scholar
Dumond L, Lam PY, van Erven G, Kabel M, Mounet F, Grima-Pettenati J, Tobimatsu Y, Hernandez-Raquet G (2021) Termite gut microbiota contribution to wheat straw delignification in anaerobic bioreactors. ACS Sustainable Chem Eng 9:2191–2202. https://doi.org/10.1021/acssuschemeng.0c07817
Article
CAS
Google Scholar
Li H, Yelle DJ, Li C, Yang M, Ke J, Zhang R, Liu Y, Zhu N, Liang S, Mo X, Ralph J, Currie CR, Mo J (2017) Lignocellulose pretreatment in a fungus-cultivating termite. Proc Natl Acad Sci USA 114:4709–4714. https://doi.org/10.1073/pnas.1618360114
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarmadi D, Tobimatsu Y, Yamamura M, Miyamoto T, Miyagawa Y, Umezawa T, Yoshimura T (2018) NMR studies on lignocellulose deconstructions in the digestive system of the lower termite Coptotermes formosanus Shiraki. Sci Rep 8:1290. https://doi.org/10.1038/s41598-018-19562-0
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, Beutel RG (2019) The evolution and genomic basis of beetle diversity. Proc Natl Acad Sci USA 116:24729–24737. https://doi.org/10.1073/pnas.1909655116
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamano K (2003) Insect damage to wooden cultural properties and countermeasures (in Japanese). Wood Ind (Mokuzai Kogyo) 58:576–581
Google Scholar
Komine Y (2019) The deathwatch beetles as a pest to cultural properties. TOBUNKENNEWS 69:45–47
Google Scholar
Fujimoto I, Yoshimura T (2018) Establishment of mass cultures of wood-attacking beetles. Sustain Human 14:13
Google Scholar
Kartika T, Yoshimura T (2015) Evaluation of wood and cellulosic materials as fillers in artificial diets for Lyctus africanus Lesne (Coleoptera: Bostrichidae). Insects 6:696–703. https://doi.org/10.3390/insects6030696
Article
PubMed
PubMed Central
Google Scholar
Kartika T, Nobuhiro S, Yoshimura T (2015) Identification of esters as novel aggregation pheromone components produced by the male powder-post beetle, Lyctus africanus Lesne (Coleoptera: Lyctinae). PLoS ONE 10:e0141799. https://doi.org/10.1371/journal.pone.0141799
Article
CAS
PubMed
PubMed Central
Google Scholar
Kartika T, Shimizu N, Himmi SK, Guswenrivo I, Tarmadi D, Yusuf S, Yoshimura T (2021) Influence of age and mating status on pheromone production in a powder-post beetle Lyctus africanus (Coleoptera: Lyctinae). Insects 12:8. https://doi.org/10.3390/insects12010008
Article
Google Scholar
Hattori T, Murakami S, Mukai M, Yamada T, Hirochika H, Ike M, Tokuyasu K, Suzuki S, Sakamoto M, Umezawa T (2012) Rapid analysis of transgenic rice straw using near-infrared spectroscopy. Plant Biotechnol 29:359–366. https://doi.org/10.5511/plantbiotechnology.12.0501a
Article
CAS
Google Scholar
Lam PY, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Umezawa T, Lo C (2017) Disrupting flavone synthase II alters lignin and improves biomass digestibility. Plant Physiol 174:972–985. https://doi.org/10.1104/pp.16.01973
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T (2009) High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol 26:337–340. https://doi.org/10.5511/plantbiotechnology.26.337
Article
CAS
Google Scholar
Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2012) Microscale thioacidolysis method for the rapid analysis of substructures in lignin. Plant Biotechnol 29:419–423. https://doi.org/10.5511/plantbiotechnology.12.0627a
Article
CAS
Google Scholar
Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/Pyridine-d5. Org Biomol Chem 8:576–591. https://doi.org/10.1039/b916070a
Article
CAS
PubMed
Google Scholar
Mansfield SD, Kim H, Lu F, Ralph J (2012) Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 7:1579–1589. https://doi.org/10.1038/nprot.2012.064
Article
CAS
PubMed
Google Scholar
Tobimatsu Y, Takano T, Umezawa T, Ralph J (2019) Solution-state multidimensional NMR of lignins: approaches and applications In: Lignin biosynthesis functions, and economic significance. Nova Science Publishers Inc, Hauppauge
Google Scholar
Miyamoto T, Mihashi A, Yamamura M, Tobimatsu Y, Suzuki S, Takada R, Kobayashi Y, Umezawa T (2018) Comparative analysis of lignin chemical structures of sugarcane bagasse pretreated by alkaline, hydrothermal, and dilute sulfuric acid methods. Ind Crops Prod 121:124–131. https://doi.org/10.1016/j.indcrop.2018.04.077
Article
CAS
Google Scholar
Kim H, Padmakshan D, Li Y, Rencoret J, Hatfield RC, Ralph J (2017) Characterization and elimination of undesirable protein residues in plant cell wall materials for enhancing lignin analysis by solution-state nuclear magnetic resonance spectroscopy. Biomacromolecules 18:4184–4195. https://doi.org/10.1021/acs.biomac.7b01223
Article
CAS
PubMed
Google Scholar
Lapierre C, Monties B, Rolando C, de Chirale L (1985) Thioacidolysis of lignin: comparison with acidolysis. J Wood Chem Technol 5:277–292. https://doi.org/10.1080/02773818508085193
Article
CAS
Google Scholar
Van Erven G, Hilgers R, de Waard P, Gladbeek EJ, van Berkel WJH, Kabel MA (2019) Elucidation of in situ ligninolysis mechanisms of the selective white-rot fungus Ceriporiopsis subvermispora. ACS Sustain Chem Eng 7:16757–16764. https://doi.org/10.1021/acssuschemeng.9b04235
Article
CAS
Google Scholar
Koch P (1972) Utilization of southern pines—volume 1. Agricultural Handbook SFES-AH-420. USDA-forest service southern forest experiment station, Asheville
Google Scholar
Robinson WH (2005) Handbook of urban insects and arachnids. Cambridge University Press, Cambridge
Book
Google Scholar
Heavilin J, Powell J, Logan JA (2007) Dynamics of mountain pine beetle outbreaks In: plant disturbance ecology. Academic Press, Cambridge
Book
Google Scholar
Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls garland science. Taylor and Francis Group, New York
Book
Google Scholar
Wybouw N, Pauchet Y, Heckel DG, Leeuwen TV (2016) Horizontal gene transfer contributes to the evolution of arthropod herbivory. Genome Biol Evol 8:1785–1801. https://doi.org/10.1093/gbe/evw119
Article
CAS
PubMed
PubMed Central
Google Scholar
Acuna R, Padilla BE, Florez-Ramos CP, Rubio JD, Herrera JC, Benavides P, Lee SJ, Yeats TH, Egan AN, Doyle JJ, Rose JKC (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci USA 109:4197–4202. https://doi.org/10.1073/pnas.1121190109
Article
PubMed
PubMed Central
Google Scholar
Pauchet Y, Kirsch R, Giraud S, Vogel H, Heckel DG (2014) Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica. Insect Biochem Mol Biol 49:1–13. https://doi.org/10.1016/j.ibmb.2014.03.004
Article
CAS
PubMed
Google Scholar
Vega FE, Brown SM, Chen H, Shen E, Nair MB, Ceja-Navarro JA, Brodie EL, Infante F, Dowd PF, Pain A (2015) Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer Hypothenemus hampei. Sci Rep 5:12525. https://doi.org/10.1038/srep12525
Article
CAS
PubMed
PubMed Central
Google Scholar
Busch A, Kunert G, Heckel DG, Pauchet Y (2017) Evolution and functional characterization of CAZymes belonging to subfamily 10 of glycoside hydrolase family 5 (GH5_10) in two species of phytophagous beetles. PLoS ONE 12:e0184305. https://doi.org/10.1371/journal.pone.0184305
Article
CAS
PubMed
PubMed Central
Google Scholar
Book AJ, Lewin GR, McDonald BR, Takasuka TE, Doering DT, Adams AS, Blodgett JAV, Clardy J, Raffa KF, Fox BG, Currie CR (2014) Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Appl Environ Microbiol 80:4692–4701. https://doi.org/10.1128/AEM.01133-14
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohashi K, Hataya S, Nakata A, Matsumoto K, Kato N, Sato W, Carlos-Shanley C, Beebe ET, Currie CR, Fox BG, Takasuka TE (2021) Mannose and mannobiose specific responses of insect associated cellulolytic streptomyces. Appl Environ Microbiol 87:e0271920. https://doi.org/10.1128/AEM.02719-20
Article
PubMed
Google Scholar
Hyodo F, Inoue T, Azuma JI, Tayasu I, Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera: Macrotermitinae). Soil Biol Biochem 32:653–658. https://doi.org/10.1016/S0038-0717(99)00192-3
Article
CAS
Google Scholar
Katsumata KS, Jin Z, Hori K, Iiyama K (2007) Structural changes in lignin of tropical woods during digestion by termite. Cryptotermes brevis J Wood Sci 53:419. https://doi.org/10.1007/s10086-007-0882-z
Article
CAS
Google Scholar
Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15. https://doi.org/10.1271/bbb.60437
Article
CAS
PubMed
Google Scholar
Bugg TDH, Ahmad M, Hardiman EM et al (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896. https://doi.org/10.1039/c1np00042j
Article
CAS
PubMed
Google Scholar
Masai E, Katayama Y, Kawai S, Nishikawa S, Yamasaki M, Morohoshi N (1991) Cloning and sequencing of the gene a Pseudomonas paucimobilis enzyme that cleaves β-aryl ether. J Bacteriol 173:7950–7955. https://doi.org/10.1128/jb.173.24.7950-7955.1991
Article
CAS
PubMed
PubMed Central
Google Scholar
Gall DL, Ralph J, Donohue TJ, Noguera DR (2014) A group of sequence-related sphingomonad enzymes catalyzes cleavage of βaryl ether linkages in lignin β-guaiacyl and β-syringyl ether dimers. Environ Sci Technol 48:12454–12463. https://doi.org/10.1021/es503886d
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohta Y, Nishi S, Hasegawa R, Hatada Y (2015) Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of β-O-4 lignin model dimers into the respective monomers. Sci Rep 5:15105. https://doi.org/10.1038/srep15105
Article
CAS
PubMed
PubMed Central
Google Scholar
Gall DL, Kontur WS, Lan W, Kim H, Li Y, Ralph J, Donohue TJ, Noguera DR (2018) In vitro enzymatic depolymerization of lignin with release of syringyl, guaiacyl, and tricin units. Appl Environ Microbiol 84:e02076-e2117. https://doi.org/10.1128/AEM.02076-17
Article
PubMed
PubMed Central
Google Scholar
Kontur WS, Olmsted CN, Yusko LM, Niles AV, Walters KA, Beebe ET, Meulen KAV, Karlen SD, Gall DL, Noguera DR, Donohue TJ (2019) A heterodimeric glutathione s-transferase that stereo specifically breaks lignin’s β(r)-aryl ether bond reveals the diversity of bacterial β-etherases. J Biol Chem 294:1877–1890. https://doi.org/10.1074/jbc.RA118.006548
Article
CAS
PubMed
Google Scholar
Voß H, Heck CA, Schallmey M, Schallmey A (2020) Database mining for novel bacterial β-etherases, glutathione-dependent lignin-degrading enzymes. Appl Environ Microbiol 86:e02026-e2119. https://doi.org/10.1128/AEM.02026-19
Article
PubMed
PubMed Central
Google Scholar
Kawai S, Umezawa T, Higuchi T (1987) p-Benzoquinone monoketals, novel degradation products of β–O–4 lignin model compounds by Coriolus versicolor and lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett 210:61–65. https://doi.org/10.1016/0014-5793(87)81298-X
Article
CAS
Google Scholar
Kawai S, Shoji SI, Nabeta K, Okuyama H, Higuchi T (1990) Degradation of non-phenolic β–O–4 lignin substructure model compounds by lignin peroxidase of Coriolus versicolor. J Japan Wood Res Soc (Mokuzai Gakkaishi) 36:126–132
CAS
Google Scholar
Ceja-Navarro JA, Nguyem NH, Karaoz U, Gross SR, Herman DJ, Andersen GL, Bruns TD, Pett-Ridge J, Blackwell M, Brodie EL (2014) Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J 8:6–18. https://doi.org/10.1038/ismej.2013.134
Article
CAS
PubMed
Google Scholar
Yelle DJ, Wei D, Ralph J, Hammel KE (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 13:1091–1100. https://doi.org/10.1111/j.1462-2920.2010.02417.x
Article
CAS
PubMed
Google Scholar
Martínez AT, Camarero S, Ruiz-Dueñas FJ, Martínez MJ (2018) Biological lignin degradation. In: Beckham GT (ed) Lignin valorization: emerging approaches. Royal Society of Chemistry, Cambridge
Google Scholar