Fan MZ, Dinwoodie JM, Bonfield PW, Breese MC (1999) Dimensional instability of cement bonded particleboard: behaviour of wood chips from various stages of manufacture of CBPB. J Mater Sci 34:1729–1740. https://doi.org/10.1023/A:1004590621247
Article
CAS
Google Scholar
Hossain MU, Wang L, Yu IKM, Tsang DCW, Poon C-S (2018) Environmental and technical feasibility study of upcycling wood waste into cement-bonded particleboard. Constr Build Mater 173:474–480. https://doi.org/10.1016/j.conbuildmat.2018.04.066
Article
Google Scholar
Kochova K, Gauvin F, Schollbach K, Brouwers HJH (2020) Using alternative waste coir fibres as a reinforcement in cement-fibre composites. Constr Build Mater 231:117121. https://doi.org/10.1016/j.conbuildmat.2019.117121
Article
Google Scholar
Fan M, Ndikontar MK, Zhou X, Ngamveng JN (2012) Cement-bonded composites made from tropical woods: compatibility of wood and cement. Constr Build Mater 36:135–140. https://doi.org/10.1016/j.conbuildmat.2012.04.089
Article
Google Scholar
Soroushian P, Won J-P, Hassan M (2013) Durability and microstructure analysis of CO2-cured cement-bonded wood particleboard. Cement Concr Compos 41:34–44. https://doi.org/10.1016/j.cemconcomp.2013.04.014
Article
CAS
Google Scholar
Nasser RA, Salem MZM, Al-Mefarrej HA, Aref IM (2016) Use of tree pruning wastes for manufacturing of wood reinforced cement composites. Cement Concr Compos 72:246–256. https://doi.org/10.1016/j.cemconcomp.2016.06.008
Article
CAS
Google Scholar
Vasubabu M, Ramesh Babu NCH, Nagabhushanam O, Venkatesh RK (2018) Chemical treatment effect on mechanical properties of Haldina cordifolia wood species. Mater Today Proc 5(13):26424–26429. https://doi.org/10.1016/j.matpr.2018.08.096
Article
CAS
Google Scholar
Quiroga V, Marzocchi V, Rintoul I (2016) Influence of wood treatments on mechanical properties of wood–cement composites and of Populus Euroamericana wood fibers. Compos B Eng 84:25–32. https://doi.org/10.1016/j.compositesb.2015.08.069
Article
CAS
Google Scholar
Sotannde OA, Oluwadare AO, Ogedoh O, Adeogun PF (2012) Evaluation of cement-bonded particle board produced from Afzelia Africana wood residues. J Eng Sci Tehcnol 7(6):732–743
Google Scholar
Balčiūnas G, Pundienė I, Boris R, Kairytė A, Žvironaitė J, Gargasas J (2018) Long-term curing impact on properties, mineral composition and microstructure of hemp shive-cement composite. Constr Build Mater 188:326–336. https://doi.org/10.1016/j.conbuildmat.2018.08.126
Article
CAS
Google Scholar
Rana MN, Islam MN, Nath SK, Das AK, Ashaduzzaman Md, Shams MI (2019) Properties of low-density cement-bonded composite panels manufactured from polystyrene and jute stick particles. J Wood Sci 65:53. https://doi.org/10.1186/s10086-019-1831-3
Article
Google Scholar
Olorunnisola AO (2005) Dimensional stability of cement-bonded composite boards produced from rattan cane particles. J Bamboo Rattan 4(2):173–182
Article
Google Scholar
Ashori A, Tabarsa T, Azizi K, Mirzabeygi R (2011) Wood–wool cement board using mixture of eucalypt and poplar. Ind Crop Prod 34(1):1146–1149. https://doi.org/10.1016/j.indcrop.2011.03.033
Article
CAS
Google Scholar
Odeyemi SO, Abdulwahab R, Adeniyi AG, Atoyebi OD (2020) Physical and mechanical properties of cement-bonded particle board produced from African balsam tree (Populous Balsamifera) and periwinkle shell residues. Results Eng 6:100–126. https://doi.org/10.1016/j.rineng.2020.100126
Article
Google Scholar
Olorunnisola AO, Adefisan OO (2002) Trial production and testing of cement-bonded particleboard from rattan furniture waste. Wood Fiber Sci 34(1):116–124. https://doi.org/10.1163/1569159054699308
Article
CAS
Google Scholar
Ezerskiy V, Kuznetsova NV, Seleznev AD (2018) Evaluation of the use of the CBPB production waste products for cement composites. Constr Build Mater 190:1117–1123. https://doi.org/10.1016/j.conbuildmat.2018.09.148
Article
Google Scholar
Melichar T, Bydzovsky J, Dufka A (2019) Seldom used by-product from trimming cement-bonded particleboard shows potential for modifying building materials composition. Waste Forum 4:368–377
Google Scholar
Melichar T, Bydzovsky J (2019) Influence of dust waste containing a silicate matrix and organic filler on properties of cement composites [Vliv prachového odpadu s obsahem silikátové matrice a organického plniva na vlastnosti cementových kompozitů]. Waste Forum 4:378–390
Google Scholar
Caprai V, Gauvin F, Schollbach K, Brouwers HJH (2018) Influence of the spruce strands hygroscopic behaviour on the performances of woo-cement composites. Constr Build Mater 166:522–530. https://doi.org/10.1016/j.conbuildmat.2018.01.162
Article
Google Scholar
Peng Y, Han Y, Gardner DJ (2010) Sodium silicate coated wood. In: Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe—Timber Committee, Geneva, Switzerland. October 11–14, 2010. Paper WS-59:1–9.
Christensen GN, Kelsey KE (1959) Die Sorption von Wasserdampf durch die chemischen Bestandteile des Holzes. Holz Roh Werkst 17:189–203
Article
Google Scholar
Lee SH, Ashaari Z, Ang AF, Halip JA (2017) Dimensional stability of heat oil-cured particleboard made with oil palm trunk and rubberwood. Eur J Wood Prod 75:285–288. https://doi.org/10.1007/s00107-016-1110-6
Article
CAS
Google Scholar
Sandberg D, Kutnar A (2016) Thermally modified timber: recent developments in Europe and North America. Wood Fiber Sci 48:28–38
Google Scholar
Ahmed SA, Morén T, Sehlstedt-Persson M, Blom A (2017) Effect of oil impregnation on water repellency, dimensional stability and mold susceptibility of thermally modified European aspen and downy birch wood. J Wood Sci 63:74–82. https://doi.org/10.1007/s10086-016-1595-y
Article
CAS
Google Scholar
Fu Z, Zhou Y, Gao X, Liu H, Zhou F (2019) Changes of water related properties in radiata pine wood due to heat treatment. Constr Build Mater 227:116692. https://doi.org/10.1016/j.conbuildmat.2019.116692
Article
Google Scholar
Li T, Cheng D, Avramidis S, Wålinder MEP, Zhou D (2017) Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood. Constr Build Mater 144:671–676. https://doi.org/10.1016/j.conbuildmat.2017.03.218
Article
CAS
Google Scholar
Popescu M-C, Froidevaux J, Navi P, Popescu C-M (2013) Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J Mol Struct 1033:176–186. https://doi.org/10.1016/j.molstruc.2012.08.035
Article
CAS
Google Scholar
He Z, Qian J, Qu L, Yan N, Yi S (2019) Effects of Tung oil treatment on wood hygroscopicity, dimensional stability and thermostability. Ind Crops Prod 140:111647. https://doi.org/10.1016/j.indcrop.2019.111647
Article
CAS
Google Scholar
Fan MZ, Dinwoodie JM, Bonfield PW, Breese MC (2002) Dimensional instability of cement bonded particleboard: Part 1. Behaviour and modelling prediction under a constant and single change in RH. Wood Sci Technol 36:125–143. https://doi.org/10.1007/s002260100110
Article
CAS
Google Scholar
Fan MZ, Dinwoodie JM, Bonfield PW, Breese MC (2004) Dimensional instability of cement bonded particleboard: Part 2: Behaviour and its prediction under cyclic changes in RH. Wood Sci Technol 38:53–68. https://doi.org/10.1007/s00226-003-0208-2
Article
CAS
Google Scholar
Fan MZ, Bonfield PW, Dinwoodie JM, Boxall J, Breese MC (2004) Dimensional instability of cement bonded particleboard: the effect of surface coating. Cem Concr Res 34:1189–1197. https://doi.org/10.1016/j.cemconres.2003.12.010
Article
CAS
Google Scholar
Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546. https://doi.org/10.1515/HF.2003.080
Article
CAS
Google Scholar
Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst 63:102–111. https://doi.org/10.1007/s00107-004-0532-8
Article
CAS
Google Scholar
Fuwape JA, Fabiyi JS, Osuntuyi EO (2007) Technical assessment of three layered cement-bonded boards produced from wastepaper and sawdust. Waste Manage 27(11):1611–1616. https://doi.org/10.1016/j.wasman.2006.09.005
Article
CAS
Google Scholar
Chen L, Beall FC (2000) Monitoring bond strength development in particleboard during pressing using acousto-ultrasonics. Wood Fiber Sci 32(4):466–477
CAS
Google Scholar
Kawamoto S, Williams RS (2002) Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites—A review. Gen. Tech. Rep. FPL-GTR-134. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI. 16 p.
Bekhta P, Niemz P, Kucera LJ (2002) The influence of selected variables on sound propagation in reconstituted wood-based materials. Eur J Wood Wood Prod 60:41–45. https://doi.org/10.1007/s00107-001-0267-8
Article
Google Scholar
Lin HC, Fujimoto Y, Murase Y (2000) Characteristic of ultrasonic wave transmission in particleboard. In: 5th Pacific Rim Rio-Based Composites Symposium, Canberra. December 10–13, 2000. pp 478–484.
Chen L, Beall FC (2000) Monitoring bond strength development in particleboard during pressing, using acousto-ultrasonics. Wood Fiber Sci 32:466–477
CAS
Google Scholar
Hilbers U, Thömen H, Hasener J, Frühwald A (2011) Effects of material density and particle type on the ultrasonic transmission through wood-based panels. Wood Sci Technol 46:685–698. https://doi.org/10.1007/s00226-011-0436-9
Article
CAS
Google Scholar
Schmerr LW, Song SJ (2007) Ultrasonic nondestructive evaluation systems models and measurements. Springer, New York. https://doi.org/10.1007/978-0-387-49063-2
Book
Google Scholar
Kazemi S, Bucur V, Ebrahimi G (2005) Elastic constants of particleboard with ultrasonic technique. Mater Lett 59:2039–2042. https://doi.org/10.1016/j.matlet.2005.02.013
Article
CAS
Google Scholar
Lin HC, Fujimoto Y, Murase Y (2002) Influences of particle size and moisture content on ultrasonic wave transmission characteristics in thickness direction of particleboard. J Fac Agric Kyushu Univ 46:433–444
Google Scholar
Sanabria SJ, Hilbers U, Neuenschwander J, Niemz P, Sennhauser U, Thömen H, Wenker JL (2013) Modeling and prediction of density distribution and microstructure in particleboards from acoustic properties by correlation of non-contact high-resolution pulsed air-coupled ultrasound and X-ray images. Ultrasonics 53:157–170. https://doi.org/10.1016/j.ultras.2012.05.004
Article
PubMed
CAS
Google Scholar
Hilbers U, Thoemen H, Hasener J, Fruehwald A (2012) Effects of panel density and particle type on the ultrasonic transmission through wood-based panels. Wood Sci Technol 46:685–698. https://doi.org/10.1007/s00226-011-0436-9
Article
CAS
Google Scholar
Chen L, Beall CF (2000) Monitoring bond strength development in particleboard during pressing, using acousto-ultrasonics. Wood Fiber Sci 32(4):466–477
CAS
Google Scholar
Bekhta PA, Niemz P, Kucera L (2000) The study of sound propagation in the wood-based composite materials. In: Proceedings of the 12th international symposium on nondestructive of wood, Sopron. September 13–15, 2000, pp 33–41
Vun RY, Wu Q, Bhardwaj MC, Stead G (2003) Ultrasonic characterization of structural properties of oriented strandboard: a comparison of direct-contact and non-contact methods. Wood Fiber Sci 35(3):381–396
CAS
Google Scholar
Saadat-Nia MA, Brancheriau L, Gallet P, Enayati AA, Pourtahmasi K, Honarvar F (2011) Ultrasonic wave parameter changes during propagation through poplar and spruce reaction wood. BioResources 6(2):1172–1185. https://doi.org/10.15376/biores.6.2.1172-1185
Article
CAS
Google Scholar
Melichar T, Bydžovský J, Černý V (2014) Effect of modification of cement-bonded particleboards composition on their frost resistance. Adv Mater Res 897:184–187. https://doi.org/10.4028/www.scientific.net/AMR.897.184
Article
CAS
Google Scholar
Frybort S, Mauritz R, Teischinger U, Müller U (2008) Cement bonded composites—a mechanical review. BioResources 3:602–626
Google Scholar
Ahn WY, Moslemi AA (1980) SEM examination of wood-Portland cement bonds. Wood Sci 13:77–82
CAS
Google Scholar
Bejó L, Takáts P, Vass N (2005) Development of cement bonded composite beams. Acta Silv Lign Hung 1:111–119
Google Scholar
Coutts RSP, Kightly P (1984) Bonding in wood fibre-cement composites. J Mater Sci 19:3355–3359
Article
CAS
Google Scholar
Parameswaran N, Bröker FW, Simatupang MH (1977) Zur Mikrotechnologie mineralgebundener Holzwerkstoffe Holzforschung 31:173–178 (In German)
Article
CAS
Google Scholar
Dewitz K, Kuschy B, Otto T (1984) Stofftransporte bei der Abbindung zementgebundener Holzwerkstoffe. Holztechnologie 3:151–154 (In German)
Google Scholar
Miller DP, Moslemi AA (1991) Wood-cement composites: effect of model compounds on hydration characteristics and tensile strength. Wood Fibre Sci 23:472–482
CAS
Google Scholar
Thomas NL, Birchall JD (1983) Retarding action of sugars on cement hydration. Cement Concrete Res 13(6):830–842. https://doi.org/10.1016/0008-8846(83)90084-4
Article
CAS
Google Scholar
Tittelein P, Cloutier A, Bissonnette B (2012) Design of a low-density wood–cement particleboard for interior wall finish. Cement Concrete Comp 34(2):218–222. https://doi.org/10.1016/j.cemconcomp.2011.09.020
Article
CAS
Google Scholar
Fischer F, Wienhaus O, Ryssel M, Olbrech J (1974) Die wasserlöslichen kohlenhydrate des holzes und ihr einfluss auf die herstellung von holzwolle-leichtauplatten. Holztechnologie 15(1):12–19 (In German)
CAS
Google Scholar
Wei YM, Tomita B, Hiramatsu Y, Miyatake A, Fujii T, Fujii T, Yoshinaga S (2003) Hydration behavior and compressive strength of cement mixed with exploded wood fiber strand obtained by the water-vapor explosion process. J Wood Sci 49:317–326
Article
CAS
Google Scholar
Schubert B, Wienhaus O, Bloßfeld O (1990a) Untersuchungen zum System Holz-Zement. Einfluß unterschiedlicher Zementarten auf das Abbindeverhalten von Holz-Zement-Mischungen. Holz Roh Werkst 48(5):185–189 (In German)
Schwarz HG, Simatupang MH (1983) Einfluß der chemischen Zusammensetzung von Portlandzement auf die Druckfestigkeit von Versuchskörpern aus Zement und Fichten- oder Buchenspänen. Holz Roh Werkst 41:65–69 (In German)
Article
CAS
Google Scholar
Schwarz HG (1989) Cement-bonded board in Malaysia. In: Moslemi AA (ed) Fiber and Particleboards Bonded with Inorganic Binders. Forest Products Research Society, Madison, Wisconsin, pp 91–93
Google Scholar
Sudin R, Swamy N (2006) Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J Mater Sci 41:6917–6924. https://doi.org/10.1007/s10853-006-0224-3
Article
CAS
Google Scholar
Yel H, Cavdar AD, Torun SB (2020) Effect of press temperature on some properties of cement bonded particleboard. Maderas Ciencia y technología 22(1):83–92. https://doi.org/10.4067/S0718-221X2020005000108
Article
CAS
Google Scholar
EN 634-1 (1995) Cement-bonded particleboards—specification—Part 1: general requirements. CEN
EN 634-2 (2007) Cement-bonded particleboards—specifications—Part 2: requirements for OPC bonded particleboards for use in dry, humid and external conditions. CEN
EN 323 (1993) Wood-based panels. Determination of density. CEN
EN 310 (1993) Wood based panels. Determination of modulus of elasticity in bending and of bending strength. CEN
EN 321 (2001) Wood-based panels—determination of moisture resistance under cyclic test conditions. CEN
EN 12504–4 (2004) Testing concrete—Part 4: determination of ultrasonic pulse velocity. CEN
ČSN 73 1371 (2011) Non-destructive testing of concrete—method of ultrasonic pulse testing of concrete. ČNI
Rowell RM (2005) Chemical modification of wood. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 381–420
Chapter
Google Scholar
Karlsson O, Torniainen P, Dagbro O, Granlund K, More’n T (2012) Presence of water-soluble compounds in thermally modified wood: carbohydrates and furfurals. BioResources 7(3):3679–3689
CAS
Google Scholar
Černý V (2015) Quality of the structure of ash bodies based on different types of ash. Mater Technol 49(4):601–605. https://doi.org/10.17222/mit.2014.207
Article
Google Scholar
Melichar J, Drochytka R, Černý V (2014) Experimental testing of hydroinsulating injection screens. Adv Mater Res 860–863:2327–2330. https://doi.org/10.4028/www.scientific.net/AMR.860-863.2327
Article
CAS
Google Scholar
Makhloufi Z, Chettih M, Bederina M, El HK, Bouhicha M (2015) Effect of quaternary cementitious systems containing limestone, blast furnace slag and natural pozzolan on mechanical behavior of limestone mortars. Constr Build Mater 95:647–657. https://doi.org/10.1016/j.conbuildmat.2015.07.050
Article
Google Scholar
Oey T, Kumar A, Bullard JW, Neithalath N, Sant G (2013) The filler effect: the influence of filler content and surface area on cementitious reaction rates. J Am Ceram Soc 96(6):1978–1990. https://doi.org/10.1111/jace.12264
Article
CAS
Google Scholar
Rahhal V, Bonavetti V, Trusilewicz L, Pedrajas C, Talero R (2012) Role of the filler on Portland cement hydration at early ages. Constr Build Mater 27(1):82–90. https://doi.org/10.1016/j.conbuildmat.2011.07.021
Article
Google Scholar
Rowell RM (2004) Solid wood processing chemical modification. In: Burley J (ed) Encyclopedia of forest sciences. Elsevier Ltd., Amsterdam, pp 1269–1274
Chapter
Google Scholar
Peterková J, Sedlmajer M, Michalčíková M, Pařílková J (2019) Electrical impedance used for measurement of moisture distribution in thermal insulation plasters. Periodica Polytechnica Civil Eng 63(2):489–498. https://doi.org/10.3311/PPci.10901
Article
Google Scholar