Creffield JW (1996) Wood destroying insect: wood borers and termites. CSIRO Publishing, Melbourne
Book
Google Scholar
Ewart D (2014) Urban timber pest beetles: risks and management. In: Dhang P (ed) Urban insect pests: sustainable management strategies. CABI Publishing, Oxfordshire
Google Scholar
Mito T, Uesugi T (2004) Invasive alien species in Japan: the status quo and the new regulation for prevention of their adverse effects. Glob Environ Res 8:171–193
Google Scholar
Lewis V, Forschler B (2014) Management of drywood termites: past practices, present situation, and future prospects. In: Dhang P (ed) Urban insect pests: sustainable management strategies. CABI Publishing, Oxfordshire
Google Scholar
Pournou A (2020) Wood deterioration by insects. In: Anastasia P (ed) Biodeterioration of wooden cultural heritage. Springer, Cham
Chapter
Google Scholar
Yamano K (2003) Insect damage to wooden cultural properties and countermeasures. Wood Ind 58:576–581 (in Japanese)
Google Scholar
Komine Y (2019) The deathwatch beetles as a pest to cultural properties. Tobunkennews 69:45–47 (in Japanese)
Google Scholar
Parkin EA (1940) The digestive enzymes of some wood-boring beetle larvae. J Exp Biol 17:364–377. https://doi.org/10.1242/jeb.17.4.364
Article
CAS
Google Scholar
Robinson WH (2005) Handbook of urban insects and arachnids. Cambridge University Press, Cambridge
Book
Google Scholar
Resh VH, Carde RT (2009) Insecta overview. In Encyclopedia of insects, 5th edn. Academic Press, London
Google Scholar
Potter MF (1993) Diagnosis, management of powder-post beetles. Pest Control Technol 21(4):10
Google Scholar
Jackman JA. Structure-infesting wood-boring beetles. Texas A&M AgriLife Extension. https://counties.agrilife.org/liberty/files/2020/05/Structure-Infesting-Wood-Boring-Beetles-Publ.-E-394.pdf. Accessed 30 Nov 2022.
Chiappini E, Aldini RN (2011) Morphological and physiological adaptations of wood-boring beetle larvae in timber. J Ent Acarol Res Ser II 43:47–59. https://doi.org/10.4081/jear.2011.47
Article
Google Scholar
Douglas AE (2009) Nutritional ecology: the microbial dimension in insect nutritional ecology. Func Ecol 23:38–47. https://doi.org/10.1111/j.1365-2435.2008.01442.x
Article
Google Scholar
Dohet L, Gregoire JC, Berasategui A, Kaltenpoth M, Biedermannm HW (2016) Bacterial and fungal symbionts of parasitic Dendroctonus bark beetles. FEMS Microbiol Ecol 92:1–12. https://doi.org/10.1093/femsec/fiw129
Article
CAS
Google Scholar
Garcia-Fraile P (2017) Roles of bacteria in the bark beetle halobiont - how do they shape this forest pest? Ann Appl Biol 172:111–125. https://doi.org/10.1111/aab.12406
Article
Google Scholar
McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, Beutel RG (2019) The evolution and genomic basis of beetle diversity. Proc Natl Acad Sci 116:24729–24737. https://doi.org/10.1073/pnas.1909655116
Article
CAS
Google Scholar
Goodell B, Winandy JE, Morrell JJ (2020) Fungal degradation of wood: emerging data, new insights, and changing perceptions. Coatings 10:1210. https://doi.org/10.3390/coatings10121210
Article
CAS
Google Scholar
Kartika T, Yoshimura T (2015) Evaluation of wood and cellulosic materials as fillers in artificial diets for Lyctus africanus Lesne (Coleoptera: Bostrichidae). Insects 6:696–703. https://doi.org/10.3390/insects6030696
Article
Google Scholar
Tremmel M, Muller C (2013) Insect personality depends on environmental conditions. Behav Ecol 24:386–392. https://doi.org/10.1093/beheco/ars175
Article
Google Scholar
Tremmel M, Muller C (2014) Diet dependent experience and physiological state shape the behavior of a generalist herbivore. Physiol Behav 129:95–103. https://doi.org/10.1016/j.physbeh.2014.02.030
Article
CAS
Google Scholar
Naya DE, Lardies MA, Bozinovic F (2007) The effect of diet quality on physiological and life-history traits in the harvestman Pachylus paessleri. J Insect Physiol 53:132–138. https://doi.org/10.1016/j.jinsphys.2006.11.004
Article
CAS
Google Scholar
Borzoui E, Naseri B, Namin FR (2015) Different diets affecting biology and digestive physiology of the kapra beetle, Trogoderma granarium everts (coleoptera: dermestidae). J Stored Prod Res 62:1–7. https://doi.org/10.1016/j.jspr.2015.03.003
Article
Google Scholar
Borzoui E, Naseri B (2016) Wheat cultivars affecting life history and digestive amylolytic activity of Sitotroga cerealella olivier (lepidoptera: gelechiidae). Bull Entomol Res 106:464–473. https://doi.org/10.1017/s000748531600016x
Article
CAS
Google Scholar
Fujimoto I, Yoshimura T (2018) Establishment of mass cultures of wood-attacking beetles. Sustain Humanosp 14:13
Google Scholar
Krishanti NPRA, Tobimatsu Y, Miyamoto T, Fujimoto I, Kartika T, Umezawa T, Hata T, Yoshimura T (2022) Structural basis of lignocellulose deconstruction by the wood-feeding anobiid beetle Nicobium hirtum. J Wood Sci 68:10. https://doi.org/10.1186/s10086-022-02017-6
Article
CAS
Google Scholar
Kartika T, Nobuhiro S, Yoshimura T (2015) Identification of esters as novel aggregation pheromone components produced by the male powder-post beetle, Lyctus africanus Lesne (coleoptera: lyctinae). PLoS ONE 10:e0141799. https://doi.org/10.1371/journal.pone.0141799
Article
CAS
Google Scholar
Kartika T, Shimizu N, Himmi SK, Guswenrivo I, Tarmadi D, Yusuf S, Yoshimura T (2021) Influence of age and mating status on pheromone production in a powder-post beetle Lyctus africanus (coleoptera: lyctinae). Insects 12:8. https://doi.org/10.3390/insects12010008
Article
Google Scholar
Zega SLD, Fajar A, Himmi SK, Adi DS, Tarmadi D, Nandika D, Yusuf S (2020) Examination of fecal pellet physical characteristics of an invasive drywood termite, Cryptotermes dudleyi (isoptera: kalotermitidae): a potential approach for species marker and non-destructive monitoring method. IOP Conf Ser Mater Sci Eng 935:012050
Article
Google Scholar
Hattori T, Murakami S, Mukai M, Yamada T, Hirochika H, Ike M, Tokuyasu K, Suzuki S, Sakamoto M, Umezawa T (2012) Rapid analysis of transgenic rice straw using near-infrared spectroscopy. Plant Biotechnol 29:359–366. https://doi.org/10.5511/plantbiotechnology.12.0501a
Article
CAS
Google Scholar
Lam PY, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Umezawa T, Lo C (2017) Disrupting flavone synthase II alters lignin and improves biomass digestibility. Plant Physiol 174:972–985. https://doi.org/10.1104/pp.16.01973
Article
CAS
Google Scholar
Tarmadi D, Tobimatsu Y, Yamamura M, Miyamoto T, Miyagawa Y, Umezawa T, Yoshimura T (2018) NMR studies on lignocellulose deconstructions in the digestive system of the lower termite Coptotermes formosanus Shiraki. Sci Rep 8:1290. https://doi.org/10.1038/s41598-018-19562-0
Article
CAS
Google Scholar
Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T (2009) High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol 26:337–340. https://doi.org/10.5511/plantbiotechnology.26.337
Article
CAS
Google Scholar
Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2012) Microscale thioacidolysis method for the rapid analysis of substructures in lignin. Plant Biotechnol 29:419–423. https://doi.org/10.5511/plantbiotechnology.12.0627a
Article
CAS
Google Scholar
Tokuda G (2019) Plant cell wall degradation in insects: recent progress on endogenous enzymes revealed by multi-omics technologist. Adv Insect Physiol 57:97–136. https://doi.org/10.1146/annurev-ento-112408-085319
Article
CAS
Google Scholar
Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632. https://doi.org/10.1146/annurev-ento-112408-085319
Article
CAS
Google Scholar
Katsumata KS, Jin Z, Hori K, Iiyama K (2007) Structural changes in lignin of tropical woods during digestion by termite Cryptotermes brevis. J Wood Sci 53:419–426. https://doi.org/10.1007/s10086-007-0882-z
Article
CAS
Google Scholar
Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MdM, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937. https://doi.org/10.1073/pnas.0805257105
Article
Google Scholar
Ke J, Laskar DD, Singh D, Chen S (2011) In situ lignocellulosic unlocking mechanisms for carbohydrate hydrolysis in termites: crucial lignin modification. Biotechnol Biofuel 4:1–12. https://doi.org/10.1186/1754-6834-4-17
Article
CAS
Google Scholar
Ceja-Navarro JA, Karaoz U, Bill M, Hao Z, White RA III, Ramanculova L et al (2019) Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat Microbiol 4:864–875. https://doi.org/10.1038/s41564-019-0384-y
Article
CAS
Google Scholar
Dumond L, Lam P, G-van E, Kabel M, Mounet F, Grima-Pettenati G, Tobimatsu Y, Hernandez-Raquet G (2021) Termite gut microbiota contribution to wheat straw delignification in anaerobic bioreactors. ACS Sustain Chem Eng 9:2191–2202. https://doi.org/10.1021/acssuschemeng.0c07817
Article
CAS
Google Scholar
Shafiei M, Moczek AP, Nijhout HF (2001) Food availability controls the onset of metamorphosis in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). Physiol Entomol 26:173–180. https://doi.org/10.1046/j.1365-3032.2001.00231.x
Article
Google Scholar
Emlen DJ (1997) Diet alters male horn allometry in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc R Soc Lond Series Biol Sci 264:567–574. https://doi.org/10.1098/rspb.1997.0081
Article
Google Scholar
Karino K, Seki N, Chiba M (2004) Larval nutritional environment determines adult size in Japanese horned beetles, Allomyrina dichotoma. Ecol Res 19:663–668. https://doi.org/10.1111/j.1440-1703.2004.00681.x
Article
Google Scholar
Gotoh H, Fukaya K, Miura T (2012) Heritability of male mandible length in the stag beetle Cyclommatus metallifer. Entomol Sci 15:430–433. https://doi.org/10.1111/j.1479-8298.2012.00527.x
Article
Google Scholar
Harvey DJ, Gange AC (2006) Size variation and mating success in the stag beetle, Lucanus cervus. Physiol Entomol 31:218–226. https://doi.org/10.1111/j.1365-3032.2006.00509.x
Article
Google Scholar
Gotoh H, Cornette R, Koshikawa S, Okada Y, Lavine LC, Emlen DJ, Miura T (2011) Juvenile hormone regulates extreme mandible growth in male stag beetles. PLoS ONE 6:e21139. https://doi.org/10.1371/journal.pone.0021139
Article
CAS
Google Scholar
Chen Y, Ni X, Buntin GD (2008) Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol Exp Appl 126:244–255. https://doi.org/10.1111/j.1570-7458.2007.00662.x
Article
CAS
Google Scholar
Tarmadi D, Yoshimura T, Tobimatsu Y, Yamamura M, Umezawa T (2017) Effects of lignin as diet components on the physiological activities of a lower termite, Coptotermes formosanus Shiraki. J Insect Physiol 103:57–63. https://doi.org/10.1016/j.jinsphys.2017.10.006
Article
CAS
Google Scholar