Hakkila P (2004) Developing technology for large scale production of Forest chips. Wood Energy Technology Programme 1999–2003. Tekes, Helsinki
Gendek A, Więsik J (2015) Chippers. In: Więsik J (ed) Technical equipment in forestry production, vol II. Machines and equipment for wood harvesting and transport. SGGW, Warszawa, pp 321–351
Google Scholar
Wihersaari M (2005) Evaluation of greenhouse gas emission risks from storage of wood residue. Biomass Bioenerg 28:444–453. https://doi.org/10.1016/j.biombioe.2004.11.011
Article
CAS
Google Scholar
Gendek A, Zychowicz W (2015) Analysis of wood chippings fractions utilized for energy purposes Annals of Warsaw University of Life Sciences–SGGW. Agriculture 65:79–91
Google Scholar
Gendek A, Nurek T, Zychowicz W, Moskalik T (2018) Effects of intentional reduction in moisture content of forest wood chips during transport on truckload price. BioResources 13:4310–4322. https://doi.org/10.15376/biores.13.2.4310-4322
Article
CAS
Google Scholar
Fernando WJN, Low HC, Ahmad AL (2011) Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. J Food Eng 102:310–316. https://doi.org/10.1016/j.jfoodeng.2010.09.004
Article
Google Scholar
Gebreegziabher T, Oyedun A, Hui D (2013) Optimum biomass drying for combustion—a modeling approach. Energy. https://doi.org/10.1016/j.energy.2013.03.004
Article
Google Scholar
Porciuncula BDA, Zotarelli MF, Carciofi BAM, Laurindo JB (2013) Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydration and its use in predictive models. J Food Eng 119:490–496. https://doi.org/10.1016/j.jfoodeng.2013.06.011
Article
Google Scholar
Mattsson JE (1990) Basic handling characteristics of wood fuels: angle of repose, friction against surfaces and tendency to bridge for different assortments. Scand J For Res 5:583–597. https://doi.org/10.1080/02827589009382641
Article
Google Scholar
Adair RK (2003) Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromagnetics 24:39–48. https://doi.org/10.1002/bem.10061
Article
PubMed
Google Scholar
Bouraoui M, Richard P, Fichtali J (1993) A review of moisture content determination in foods using microwave oven drying. Food Res Int 26:49–57. https://doi.org/10.1016/0963-9969(93)90105-R
Article
Google Scholar
Dadalı G, Apar DK, Özbek B (2007) Estimation of effective moisture diffusivity of okra for microwave drying. Dry Technol 25:1445–1450. https://doi.org/10.1080/07373930701536767
Article
Google Scholar
Dutta B, Raghavan VGS, Orsat V, Ngadi M (2015) Surface characterisation and classification of microwave pyrolysed maple wood biochar. Biosys Eng 131:49–64. https://doi.org/10.1016/j.biosystemseng.2015.01.002
Article
Google Scholar
Hansson L, Lundgren N, Antti A-L, Hagman O (2006) Finite element modeling (FEM) simulation of interactions between wood and microwaves. J Wood Sci 52:406–410. https://doi.org/10.1007/s10086-005-0794-8
Article
Google Scholar
Vadivambal R, Jayas DS (2007) Changes in quality of microwave-treated agricultural products—a review. Biosys Eng 98:1–16. https://doi.org/10.1016/j.biosystemseng.2007.06.006
Article
Google Scholar
Thuéry J, Grant EH (1992) Microwaves: industrial, scientific, and medical applications. Artech House, Boston
Google Scholar
Backer LF, Walz AW (1985) Microwave oven determination of moisture content of sunflower. Trans ASABE 28:2063–2065. https://doi.org/10.13031/2013.32566
Article
Google Scholar
Pinkrova J, Hubackova B, Kadlec P, Prihoda J, Bubnik Z (2003) Changes of starch during microwave treatment of rice. Czech J Food Sci 21:176–184. https://doi.org/10.17221/3496-CJFS
Article
CAS
Google Scholar
Soysal Y (2004) Microwave drying characteristics of parsley. Biosys Eng 89:167–173. https://doi.org/10.1016/j.biosystemseng.2004.07.008
Article
Google Scholar
Zhang M, Tang J, Mujumdar AS, Wang S (2006) Trends in microwave-related drying of fruits and vegetables. Trends Food Sci Technol 17:524–534. https://doi.org/10.1016/j.tifs.2006.04.011
Article
CAS
Google Scholar
Zhou J, Yang X, Zhu H, Yuan J, Huang K (2019) Microwave drying process of corns based on double-porous model. Dry Technol 37:1–13. https://doi.org/10.1080/07373937.2018.1439952
Article
Google Scholar
Brodie G, Hollins E (2015) The effect of microwave treatment on ryegrass and wild radish plants and seeds. Glob J Agric Innov Res Dev 2:16–24. https://doi.org/10.15377/2409-9813.2015.02.01.2
Article
Google Scholar
Mousa A, Heinrich G (2012) The effect of microwave irradiation on the physical and morphological behavior of olive husk biomass and its application in XNBR vulcanizates. Waste Biomass Valor 3:157–164. https://doi.org/10.1007/s12649-011-9106-2
Article
CAS
Google Scholar
Funebo T, Ohlsson T (1998) Microwave-assisted air dehydration of apple and mushroom. J Food Eng 38:353–367. https://doi.org/10.1016/S0260-8774(98)00131-9
Article
Google Scholar
Khraisheh MAM, McMinn WAM, Magee TRA (2004) Quality and structural changes in starchy foods during microwave and convective drying. Food Res Int 37:497–503. https://doi.org/10.1016/j.foodres.2003.11.010
Article
CAS
Google Scholar
Contreras C, Martín-Esparza ME, Chiralt A, Martínez-Navarrete N (2008) Influence of microwave application on convective drying: effects on drying kinetics, and optical and mechanical properties of apple and strawberry. J Food Eng 88:55–64. https://doi.org/10.1016/j.jfoodeng.2008.01.014
Article
Google Scholar
Al-Harahsheh M, Al-Muhtaseb AH, Magee TRA (2009) Microwave drying kinetics of tomato pomace: effect of osmotic dehydration. Chem Eng Process 48:524–531. https://doi.org/10.1016/j.cep.2008.06.010
Article
CAS
Google Scholar
Román L, Martínez MM, Rosell CM, Gómez M (2015) Effect of microwave treatment on physicochemical properties of maize flour. Food Bioprocess Technol 8:1330–1335. https://doi.org/10.1007/s11947-015-1493-0
Article
CAS
Google Scholar
Antti L, Finell M, Arshadi M, Lestander TA (2011) Effects of microwave drying on biomass fatty acid composition and fuel pellet quality. Wood Mat Sci Eng 6:34–40. https://doi.org/10.1080/17480272.2010.516369
Article
CAS
Google Scholar
Lv H, Chen X, Liu X, Fang C, Liu H, Zhang B, Fei B (2018) The vacuum-assisted microwave drying of round bamboos: drying kinetics, color and mechanical property. Mater Lett 223:159–162. https://doi.org/10.1016/j.matlet.2018.04.038
Article
CAS
Google Scholar
Nelson SO (1985) RF and microwave energy for potential agricultural applications. J Microw Power 20:65–70. https://doi.org/10.1080/16070658.1985.11720292
Article
Google Scholar
Krug E (1990) Pollenkeimung unter Einfluss elektromagnetischer Wellen und Felder. For Pathol 20:251–255
Article
Google Scholar
Velázquez-Martí B, Gracia-López C, Marzal-Domenech A (2006) Germination inhibition of undesirable seed in the soil using microwave radiation. Biosys Eng 93:365–373. https://doi.org/10.1016/j.biosystemseng.2006.01.005
Article
Google Scholar
Ryszard WJ, Dolińska R, Błaszczak W (2007) Microscope analysis of two generations of wheat grain crops grown from microwave heated seeds. Acta Agrophys 10:727–737
Google Scholar
Jakubowski T (2008) The impact of microwave irradiation of growth dynamics of potato tuber germs. Inżynieria Rolnicza 12:7–13
Google Scholar
Słowiński K (2013) The influence of microwave radiation emitted to non-disinfected nursery soil on the survivability and chosen biometric characteristics of Scots pine (Pinus sylvestris L.), Zeszyty Naukowe. Uniwersytet Rolniczy im H Kołłątaja, Kraków
Google Scholar
Krajewski A (2001) Physical methods of wood densinsectisation in monuments of culture. In: Rozprawy Naukowe i Monografie. Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, pp 1–197
Krajewski A (1990) Fighting insects—technical pests of wood with microwaves. Prot Monum 168:27–34
Google Scholar
Hong-Hai L, Qing-Wen W, Lin Y, Tao J, Ying-Chun C (2005) Modification of larch wood by intensive microwave irradiation. J For Res 16:237–240. https://doi.org/10.1007/BF02856823
Article
Google Scholar
Du G, Wang S, Cai Z (2005) Microwave drying of wood strands. Dry Technol 23:2421–2436. https://doi.org/10.1080/07373930500340494
Article
CAS
Google Scholar
Wang X, Chen H, Luo K, Shao J, Yang H (2007) The influence of microwave drying on biomass pyrolysis. Energy Fuels 22:67–74
Article
Google Scholar
Sethy AK, Torgovnikov G, Vinden P, Przewloka S (2016) Moisture conditioning of wood using a continuous microwave dryer. Dry Technol 34:318–323. https://doi.org/10.1080/07373937.2015.1052502
Article
CAS
Google Scholar
He X, Xiong X, Xie J, Li Y, Wei Y, Quan P, Mou Q, Li X (2017) Effect of microwave pretreatment on permeability and drying properties of wood. BioResources 12:3850–3863. https://doi.org/10.15376/biores.12.2.3850-3863
Article
CAS
Google Scholar
Rezaei H, Lim CJ, Lau A, Bi X, Sokhansanj S (2017) Development of empirical drying correlations for ground wood chip and ground wood pellet particles. Dry Technol 35:1423–1432. https://doi.org/10.1080/07373937.2016.1198912
Article
Google Scholar
Dedic AD, Svrzic SV, Janevski JN, Stojanovic B, Milenkovic MD (2018) Three-dimensional model for heat and mass transfer during convective drying of wood with microwave heating. JPM 21:877–886. https://doi.org/10.1615/JPorMedia.2018018908
Article
Google Scholar
Ouertani S, Koubaa A, Azzouz S, Bahar R, Hassini L, Belghith A (2018) Microwave drying kinetics of jack pine wood: determination of phytosanitary efficacy, energy consumption, and mechanical properties. Eur J Wood Prod 76:1101–1111. https://doi.org/10.1007/s00107-018-1316-x
Article
CAS
Google Scholar
Cai L, Wang F, Li J (1995) Optimum steam pretreating technique of chips for manufacturing of particleboards. Holz als Roh-und Werkstoff 53:21–23. https://doi.org/10.1007/BF02716379
Article
Google Scholar
Bero B, Reiboldt A, Davis W, Bedard N, Russell E (2011) Low temperature fluidized wood chip drying with monoterpene analysis. Holz als Roh-und Werkstoff 69:545–552. https://doi.org/10.1007/s00107-010-0519-6
Article
CAS
Google Scholar
Gorny RL, Mainelis G, Wlazlo A, Niesler A, Lis DO, Marzec S, Siwińska E, Łudzeń-Izbińska B, Harkawy A, Kasznia-Kocot J (2007) Viability of fungal and actinomycetal spores after microwave radiation of building materials. Ann Agric Environ Med 14:313–324
PubMed
Google Scholar
Hoover K, Uzunovic A, Gething B, Dale A, Leung K, Ostiguy N, Janowiak JJ (2010) Lethal temperature for pinewood nematode, Bursaphelenchus xylophilus, in infested wood using microwave energy. J Nematol 42:101–110
PubMed
PubMed Central
Google Scholar
Payette M, Work TT, Drouin P, Koubaa A (2015) Efficacy of microwave irradiation for phytosanitation of wood packing materials. Ind Crops Prod 69:187–196. https://doi.org/10.1016/j.indcrop.2015.01.030
Article
CAS
Google Scholar
Fleming MR, Hoover K, Janowiak JJ, Fang Y, Wang X, Liu W, Wang Y, Hang X, Agrawal DK, Mastro VC, Lance DR, Shield JE, Roy R (2003) Microwave irradiation of wood packing material to destroy the Asian longhorned beetle. For Prod J 53:46–52
Google Scholar
Barbirato GHA, Junior WEL, Hellmeister V, Pavesi M, Fiorelli J (2018) OSB panels with balsa wood waste and castor oil polyurethane resin. Waste Biomass Valor 11:743–751. https://doi.org/10.1007/s12649-018-0474-8
Article
CAS
Google Scholar
Kubiak M, Laurow Z (1994) Material’s wood. Fundacja Rozwój SGGW , Warszawa
Google Scholar
ANSI/ASAE S424.1 MAR1992 (R2017) Method of determining and expressing particle size of chopped forage materials by screening
ISO 565:1990 Test sieves—Metal wire cloth, perforated metal plate and electroformed sheet—nominal sizes of openings. International Organization for Standardization, Geneva, Switzerland
ISO 3310-1:2016 Test sieves—Technical requirements and testing—Part 1: test sieves of metal wire cloth. International Organization for Standardization, Geneva, Switzerland
Lisowski A, Sar Ł, Świątek K, Kostyra K (2008) Sieve separator to analysis of chaff length distribution. Technika Rolnicza Ogrodnicza Leśna 2:17–19
Google Scholar
Aniszewska M, Słowiński K (2016) Effects of microwave irradiation by means of a horn antenna in the process of seed extraction on Scots pine (Pinus sylvestris L.) cone moisture content and seed germination energy and capacity. Eur J Forest Res 135:633–642. https://doi.org/10.1007/s10342-016-0960-0
Article
CAS
Google Scholar
Zawistowski P, Arabas J, Głowacki SZ (2010) Modeling of wood biomass drying process with the use of neural nets. Annals of Warsaw University of Life Sciences–SGGW. Agriculture 55:39–45
Google Scholar
Hendreson SM, Pabis S (1961) Grain drying theory. I. Temperature effect on drying coefficients. J Agric Eng Res 6:169–174
Google Scholar
Pabis S, Jayas DS, Cenkowski S (1988) Grain drying: theory and practice. Wiley, Hoboken
Google Scholar
Spinelli R, Hartsough BR, Magagnotti N (2005) Testing mobile chippers for chip size distribution. Int J For Eng 16:29–35
Google Scholar
Picchio R, Spina R, Sirna A, Monaco AL, Civitarese V, Giudice AD, Suardi A, Pari L (2012) Characterization of woodchips for energy from forestry and agroforestry production. Energies 5:3803–3816. https://doi.org/10.3390/en5103803
Article
CAS
Google Scholar
PN-91/D-95009 Wood raw material—forest chips. Polish Committee for Standardization, Warsaw, Poland
ISO/TS 17225-9:2020 Solid biofuels—Fuel specifications and classes—Part 9: graded hog fuel and wood chips for industrial use. International Organization for Standardization, Geneva, Switzerland
Reczulski M (2015) Analysis of the construction and operation of system wood chipping and transfer chips. Wood Res 60:671–678
Google Scholar
ISO 17225-4:2014-07 Solid biofuels—Fuel specifications and classes—Part 4: graded wood chips. International Organization for Standardization, Geneva, Switzerland
Li X, Zhang B, Li W, Li Y (2005) Research on the effect of microwave pretreatment on moisture diffusion coefficient of wood. Wood Sci Technol 39:521–528. https://doi.org/10.1007/s00226-005-0007-z
Article
CAS
Google Scholar