 Original Article
 Open access
 Published:
Mechanical properties of laminated bamboo lumber Nfinity according to ISO 234782022
Journal of Wood Science volume 70, Article number: 1 (2024)
Abstract
This research used the new ISO 234782022 standard as a reference for the calculation of mechanical properties of Nfinity, and to understand the failure modes in compression. Previous studies have investigated the mechanical properties of laminated bamboo lumber (LBL), however no study has evaluated the mechanical properties of LBL according to the recently published ISO 234782022. The compression testing programme in parallel and perpendiculartograin directions were conducted. The measured elastic stiffness properties and compressive strengths show anisotropy with higher compressive strength and stiffness paralleltograin direction as compared to those at the transversal directions. The observed failure modes at the paralleltograin direction exhibited a mixed mode failure, whereas perpendiculartograin directions exhibited failure with longitudinal splitting with crack propagation rupture. This finding can be quantified using Hills failure criterion principle to define the failure criterion and to estimate the Hill’s yield failure ratios.
Introduction
Engineered bamboo products (EBPs) made of Phyllostachys pubescens referred herein as ‘Moso bamboo’, have been researched extensively. A commercially available product of EBPs is laminated bamboo lumber named “NFinity”. This structural product is manufactured by Moso International BV in the Netherlands, and it is considered as a natural composite material with lowcarbon footprint [1]. The typical manufacturing process starts with a standardised cutting of bamboo strips from the middle part of a ringlike culm wall after the removal of the skin at the outer part and the pith ring at the inner part. The resulting product is a thick strip with crosssectional dimensions of about 20 mm width and 6 mm thickness, see Fig. 1d. Then, the Nfinity is manufactured by gluing strips utilising Phenol formaldehyde resins PF of good performance characteristics to provide an engineered composite beam, which is available with two different laminate orientations: Flatwisesection and Edgewisesection, see Fig. 1e.
Until now, many studies have been conducted on the mechanical properties of EBPs [2,3,4,5,6]. However, Laminated bamboo lumber (LBL) are increasingly recognised in structural applications and in building fullscale constructions. A bamboo villa was built in 2008 by Nanjing Forestry University, and a bamboo house was built by Hunan University, each of which were twostory office buildings [7, 8]. These structural buildings are formed from structural components such as beams, columns, walls, and beamtocolumn connections. Several experimental investigations have determined the overall stiffness properties of LBL in compression and shear parallel and perpendiculartograin directions, see Table 1. The cited literature in this table concluded the importance of LBL as a constructional material. The reported axial elastic modulus in compression parallel and perpendiculartograin directions were found to be about 8.7 GPa, and 1.7 GPa on average, respectively. The shear modulus was 0.5–1.4 GPa and 0.4–1.3 GPa for parallel and perpendiculartograin directions, respectively, whereas the compression strength parallel and perpendiculartograin directions were found to be within the range of 34–84 MPa, and 18–36 MPa, respectively. To conclude, these investigations were mainly conducted utilising several standards which are designed specifically for timber and polymeric composite materials rather than bamboobased materials. In addition, the focus of the cited literature was on small clear specimens to obtain the overall stiffness properties of LBL.
However, to the authors’ best knowledge, no study has evaluated the mechanical properties of LBL utilising the recently published ISO 234782022 [19] standard for testing structural specimens of EPBs including LBL. Therefore, the ISO 234782022 standard was used as a reference for the test method and the calculation of mechanical properties of a commercial type of LBL named “Nfinity” in compression paralleltograin (axial direction), perpendiculartograin (tangential direction) and perpendiculartograin (radial direction). This is attained by experimentally testing engineered bamboo with small clear specimens at three orthogonal directions. Physical uniaxial testing in compression was conducted at the Department of Structural Engineering of the Budapest University of Technology and Economics.
The paper is divided into the following sections. Experimental programme provides a detailed description of the experimental programme including the materials used and the steps for preparing the compression specimens parallel and perpendiculartograin directions. In addition, the procedure and measurement of ovendry density and moisture content of the specimens are briefly described. The results and discussion reports the results of ovendry density, moisture content and experimental uniaxial compression test specimens, and the measured elastic modulus and compressive strengths, all of which are compared with reported previous experimental results. Also, in the Results and discussion, the failure modes of Nfinity Moso bamboo are presented. Hill’s failure criterion and mechanical properties of Nfinity Moso bamboo gives a brief overview of the estimated mechanical properties of Nfinity Moso bamboo using Hill’s failure criterion. Finally, Conclusion and future work describe the main conclusions and areas for further research.
Experimental programme
Materials and compression specimen preparation
The Nfinity beam is an LBL product commercially available in Hungary from the company Introwood who imported it from the Netherlands. This product was manufactured from the middle layers of fouryearold moso bamboo. The engineered beams have a dimension of 2000 mm length, 36 mm width and 80 mm height or depth. The laminate orientation of Nfinity beam is Flatwise, see Fig. 2a. The compression specimens, cut from the engineered beams, formed three groups: group a: paralleltograin, longitudinal (L) or x axis, group b: perpendiculartograin, tangential (T) or y axis, and group c: along the thickness, radial (R) or z axis. To prepare specimens of group a, the short rectangular beam of depth 80 mm was cut longitudinally into twohalves and machined to the required size (see Table 2) using an electric sawing band. Specimens of group b were prepared by cutting longitudinally the short rectangular beam of depth 80 mm into twohalves which are glued to each other sideway (c.f. Figure 2b) s applying an epoxy adhesive named Araldite 2011, a twocomponent glue supplied by the Hungarian company Neosil Kft. Specimens of group c were prepared after cutting the Nfinity beam into small cuboids of length 36 mm. As a result, 16 specimens of each group were prepared, resulting in a total of 48 cuboid samples prepared for compression testing in all three directions (longitudinal, tangential, radial). Five specimens for each group were equipped with 4 strain gauges as shown in Fig. 2b to measure the strains and to obtain the Poisson’s ratio. The geometrical dimension of all compression specimens in groups a, b and c is presented in Table 2.
Ovendry density analysis and the moisture contents (MC) determination
According to the international standards ISO 221572019 [20] and ISO 234782022 [19], the best way to obtain the airdry density is through using a conventional ovendry method as follows:

1. The dimensions were measured for the chosen 15 samples at a precision of at least 0.1 mm to estimate their initial volume V_{0} and weighing were carried out to obtain the original mass m_{0.}

2. Then, the specimens were placed in the oven at a temperature of 103 ℃ for 24 h to dry. After the 24 h long drying, the process continued until the constant ovendry mass were reached, that is, until hourly mass measurement (m_{i}) showed smaller deviation than 0.5% of the original specimen mass m_{0}. The final weighing was carried out immediately afterward. Hence, the mass m_{dry} of the ovendry test specimens was determined to a precision of 0.5% of the original specimen mass m_{i}. The basic dry density \(\rho\) was obtained from the formula:
$$\rho =\frac{{m}_{{\text{dry}}}}{{V}_{0}}.$$(1)The MC of the 15 axial compression specimens was also calculated as
$${\text{MC}}\left(\text{\%}\right)=\frac{{m}_{0}{m}_{{\text{dry}}}}{{m}_{{\text{dry}}}}\times 100.$$(2)
Compression tests paralleltograin (group a), and perpendiculartograin (groups b and c)
In each test group, 16 specimens were tested. All tested samples were planned and prepared in compliance to the procedure outlined in the first international bamboo standard ISO 234782022 [19].
As shown in Table 2, the compression specimens in group a had dimensions 37 mm length (axis x), 36 mm width (axis y) and 74 mm height (axis z). The effective gauge length was taken as the initial height h_{o} before commencing the test, see Fig. 3b. 16 compression specimens were conditioned and stored at a climateroom environment as prescribed in ISO 234782022 [19]; the temperature was set about 20 ± 2 ℃ and a relative humidity was about 65 ± 5% for 24 h.
All compression test samples were conducted using a universal material testing machine Zwick Z400, equipped with 479 kN capacity load head, see Fig. 3. Of the 16 cuboid specimens prepared for the test, 5 were equipped with strain gauges for accurate measurements of elastic moduli and Poisson’s ratios. Each sample was placed into the compression area and fixed with two plates at the top and bottom faces of the sample. The crosshead displacement was treated as a compressive deformation controlled in parallel and perpendiculartograin directions. For the compression tests paralleltograin direction in group a, the specimens were compressed using a testing machine Zwick Z400, equipped with 479 kN capacity load head at a crosshead displacement rate of 1 mm/min up to fracture. By setting the upper limit of the applied load to 100 kN, the maximum compression displacement was measured to reach less than 16 mm. The specimens of group b and c were loaded at a crosshead displacement rate of 1 mm/min up to fracture. By setting the upper limit of the applied load for tangential and radial directions was set to 40 kN, the maximum compression displacement reached less than 13 and 9 mm for tangential (group b) and radial (group c) direction, respectively. All tested specimens were completed within 300 s as outlined in ISO 234782022 [19]. The strain gauge sensors were supplied by a Hungarian company MikroT corp., its nominal resistance is 350 Ω ± 0.3%, its gauge length is 3 mm, and its grid width is 3 mm. Figure 3b shows the layout of the strain gauges on the faces of specimens from group a. The elastic modulus in compression tests paralleltograin was suggested by ISO 234782022 to be calculated as
where \({l}_{1}\) is the gauge length of the sample, \({F}_{40}\) and \({F}_{10}\) are the applied load at 40% and 10% of F_{max}, respectively, \({\Delta }_{40}\) is the displacement corresponding to load \({F}_{40}\), \({\Delta }_{10}\) is the displacement corresponding to load \({F}_{10}\), \(b\) and \(h\) are crosssectional dimensions of the specimen. The compressive strength paralleltograin was calculated as
where F_{max} is the ultimate load,
The elastic modulus in compression tests perpendiculartograin (tangential and radial) was suggested by ISO 234782022 to be calculated as
where \({h}_{0}\) is the original sample height, \(l\) is the length of the specimen. \({F}_{40}\) and \({F}_{10}\) are the applied load at 40% and 10% of \({F}_{{\text{c}},90,\mathrm{ max}}\), respectively. The compressive strength perpendiculartograin (tangential and radial) was calculated as
Figure 3c shows the typical load–displacement curve of test specimen to determine the compressive strengths. The yield point in Fig. 3c is \({F}_{{\text{c}},90,\mathrm{ max}}\) which can be defined as the maximum compressive load perpendiculartograin (tangential and radial).
Results and discussion
Ovendry density measurements
The results of the physical determination of the ovendry density and moisture content for axial compression specimens parallel and perpendiculartograin directions are summarised in Table 3. The mean value of MC of the samples was measured to be ~ 7.2% in average, and an ovendry density of 625 kg/m^{3}.
Compressive strength measurements of Nfinity bamboo samples
This section presents the results of the measured compressive strengths both parallel and perpendiculartograin directions. The measured values, using Eqs. (4) and (6), are summarised in Table 4. As can be seen, the ultimate compressive strength paralleltograin direction shows the highest value of about 68 MPa in average as compared to perpendiculartograin tangential and radial directions with 15 MPa and 13 MPa, respectively.
In Table 4, \({\sigma }_{11}\) is the compressive strength paralleltograin, \({\sigma }_{22}\) is the compressive strength perpendiculartograin in the tangential direction and \({\sigma }_{33}\) is the compressive strength perpendiculartograin in the radial direction. The coefficient of variation (COV) is the ratio of the standard deviation (STD) to the mean of n = 16 samples at each tested group. From the measured values, it can be found that the ratio of the maximum compressive load of paralleltograin direction is 4.45 higher than that of perpendiculartograin tangential direction and is 5.21 higher than that in the perpendiculartograin radial direction. These observed values are consistent with previous experimental studies using testing methods BS 373, GB/T19312009, GB/T19332009GB/T 50329–2012, JG/T 199–2007, and BS EN 408 as listed in Table 1.
The load–displacement relationship curves of the specimens parallel and perpendiculartograin directions are shown in Fig. 4. From the graphs, one can see clearly that all specimens under compression show three distinct regions. The first one is a linear elastic behaviour up to the yield point marked as \({F}_{{\text{c}},90,\mathrm{ max}}\) followed by a nonlinear behaviour with plastic deformation region to reach a peak point identifies as a maximum applied load \({F}_{{\text{max}}}\), and finally the descending and rupture region can be identified. This supports the elastic–plastic compression model of LBL proposed previously [10, 21]. The maximum compression displacement reached less than 16 mm for paralleltograin direction, whereas it was about 19 and 10 mm for perpendiculartograin tangential and radial directions, respectively.
Stress–strain relationship curves in compression using strain gauges
The compressive stress–strain relationship curves of the five selected test specimens in each group equipped with strain gauges are depicted in Fig. 5 both parallel and perpendiculartograin. The graph Fig. 5a for group a, illustrates a clear elastic–plastic behaviour of Nfinity Moso bamboo, however, the graphs seem to suggest linear behaviour in Fig. 5b, c, especially, for groups b and c. In case of paralleltograin load, the elastic behaviour was remarkably linear up to about 60% of the applied load followed by a flattened plastic plateau as the load increases monotonically. In case of the tangential load direction, one can see considerable hardening for some samples. It is worth noting that no clear rupture region was seen in all graphs, which can be explained by the absence of clear rupture in the strain values has to do with the fact that there was no rupture at the strain gauge positions and the maximum detected strain values of strain sensors were quite below of 10,000 µm/m. From the measured stress–strain relationships, the elastic moduli in compression were calculated from the slope of the initial linear part, and the associated Poisson’s ratios were measured in three directions [14] as
where \(\Delta {\varepsilon }{^\prime}\) and \(\Delta \varepsilon\) are the lateral and axial strain increment, respectively.
Elastic modulus and Poisson’s ratio in compression
To evaluate the elastic properties of all test specimens, standard ISO 234782022 suggests computing the elastic moduli using Eqs. (3) and (5). In Table 5, the values obtained this way are compared with those obtained from measurements by strain gauges. It is found that the majority of values (except E_{11}) obtained from specimens equipped with strain gauges show higher variability. Indeed, given the asymmetry of the deformations indicated in stress–strain relationship curves in compression using strain gauges, a significant part of the deformations occurs outside the position of the strain gauges, leading to false values not characteristics of the whole length of the sample. Thus, we find it more reliable to obtain the elastic moduli using Eqs. (3) and (5) from standard ISO 234782022 rather than measuring the strains directly by strain gauges.
Then, to compute the shear moduli in three directions, the formula was used, see [22] and [23] cited in [8]:
where \({G}_{ij}\) and \({E}_{ii}\) are the shear moduli and elastic moduli in three directions, respectively, \({\nu }_{ii}\) are the Poisson’s ratios in three directions. Even though, it is highly preferable, that the shear moduli must be determined from some shear tests including the shear test of composite laminates (Iosipescu), asymmetric fourpoint bending, and offaxis loading tests. Table 6 summarises all measured elastic properties and calculated shear moduli of the five test specimens equipped with strain gauges in three directions (longitudinal, tangential, radial) of Nfinity Moso bamboo. It is observed that group a, compression paralleltograin shows significantly higher elastic modulus than the other two directions by the ratio of 5.23 for tangential (group b) and of 6.55 for radial direction (group c). These observed trends are consistent with those found previously for LBL columns [8, 11, 14]. The mean shear moduli were obtained from Eq. (8) using the mean values of the elastic moduli and Poisson’s ratios.
Typical failure mode mechanisms of Nfinity samples in compression
The ultimate load capacity of Nfinity, which is composed of glued bamboo strips, depends on the failure mode and the amount of fibres present in the specific failure location. Here, the typical failure of bamboo specimens in all three investigated groups a, b and c were examined. The three main modes of failure are depicted in Fig. 6 and Table 6. These failure mechanisms are as follows: Mode 1 is a combined mechanism entailing buckling of fibres (tearing) within the depth of the specimen and separation of fibres at the bottom corner of specimen and at the mid height. Mode 2 is a local buckling and shear failure occurring diagonally at the bottom corner of the specimen. Mode 3 constitutes a propagation of cracks inside the individual glued bamboo strips. The cracks occurred at the bamboo strips themselves in each tested specimen of group b, whereas cracks were inclined at one particular corner of each tested specimen of group c. It was noted that no adhesive failure or cracks were observed at the bamboo stripsglue interface, hence both fibres and adhesive glue were considered intact until the end of the compression tests.
Table 7 illustrates the failure modes of the 48 investigated compression specimens parallel and perpendiculartograin directions. It can be concluded that all compression samples paralleltograin direction exhibited a mixed mode failure, mode 1 and 2, whereas specimens of group b and c, perpendiculartograin directions exhibited failure mode 3, longitudinal splitting with crack propagation rupture. These observations were consistent with those reported by [1, 8, 10, 16, 24] for laminated bamboo.
Hill’s failure criterion and mechanical properties of Nfinity Moso bamboo
From the results of the previous section, it is evident that Nfinity Moso bamboo has directionally dependent properties with higher compressive strength and elastic properties paralleltograin direction and lower values at transversal directions. In addition, there is some difference between the elastic properties in the two transversal directions. This physical anisotropy is caused by the anisotropic material properties which were observed by the authors previously while developing an anatomybased numerical model of bamboo microstructure [25]. Hence, in this section, the failure criterion of LBL is investigated by estimating Hill’s yield failure ratios R_{ii} in the parallel and perpendiculartograin directions. This is important for the development of an accurate computational model and analysis of Nfinity bamboo with any finite element modelling package such as ANSYS. As Nfinity bamboo shows anisotropy in strength and the associated stiffness properties, the anisotropic Hill’s plasticity principle can be applied to characterise its failure criterion. According to Tang et al. [14] and Hong et al. [8], Hill’s failure criterion evaluates the strength of EBPs such as a laminated bamboo Nfinity as:
where \({\sigma }^{0}\) is the reference yield stress obtained from a uniaxial compression test in the paralleltograin direction, \({\sigma }_{11}\), \({\sigma }_{22}\), and \({\sigma }_{33}\) are the normal stresses as presented in the previous Section, \({\sigma }_{12}\), \({\sigma }_{23}\), and \({\sigma }_{31}\) are the inplane shear stress in plane 1–2, the outofplane shear stress in plane 2–3, and the outofplane shear stress in plane 1–3, respectively. F, G, and H are Hill’s yield surface coefficients estimated from three compression tests, whereas L, M, and N are surface coefficients obtained from shear tests. For a complete elaboration on the set of equations to calculate these coefficients and Hill’s yield failure ratios R_{ii} with respects to the axes of orthotropy, see Tang et al. [14] and Hong et al. [8]. The failure ratios R_{ii} can be calculated as:
where \(f\)_{11}, \(f\)_{22}, \(f\)_{33} are the strength values of Nfinity bamboo corresponding to the measured stresses parallel and perpendiculartograin compression tests in the three material directions 1, 2, and 3, respectively; \({f}_{12}\), \({f}_{23}\), and \({f}_{13}\) are the strength corresponding to the measured stresses obtained from shear tests in three planes: the inplane strength in plane 1–2, the outofplane strength in plane 2–3, and the outofplane strength in plane 1–3, respectively. Also, \({\sigma }^{0}\) is the stress obtained from our uniaxial compression test paralleltograin direction, and it was taken to be equal to the compression strength\({f}_{11}\), see Tang et al. [14] and Hong et al. [8]. The stiffness properties of Nfinity Moso bamboo are summarised in Table 8. The orthotropic yield strengths and the calculated Hill’s yield ratios are based on the measured compressive strengths at three material directions 1, 2, and 3, whereas the shear strengths values were computed for simplicity and thus, their values were obtained from Eq. (11) at three planes of orthotropy (1–2), (2–3) and (1–3), respectively, see [26] cited in [27]
where \({\upgamma }_{12}, {\upgamma }_{13}\), and \({\upgamma }_{23}\) are the shear strain in planes 1–2, 1–3, and 2–3, respectively.
Conclusions and future work
This study evaluates the mechanical properties of Nfinity Moso bamboo under uniaxial compression utilising the recently published ISO 234782022 standard for testing structural specimens of EPBs including LBL. The test programme was conducted on 48 small clear specimens at three orthogonal directions. The experimental results include overall mechanical properties like elastic moduli in compression, Poisson’s ratios, shear moduli as well as the strength properties in compression parallel and perpendiculartograin directions. It can be found the expected anisotropy of the mechanical properties, with higher values of the mechanical properties in the paralleltograin direction. The ovendry density and moisture content of the specimens were also determined. As the final point of the compression tests, the failure modes of the Nfinity samples were also presented and further discussed. Finally, Hill’s yield surface coefficients were estimated, using the anisotropic Hill’s plasticity principle to support later numerical modelling of bamboo taking into account its anisotropy.
The following conclusions can be drawn from the present study:

The measured compressive strength utilising the recently published ISO 234782022 standard shows the highest value of about 68 MPa in average in the paralleltograin direction. The corresponding values perpendiculartograin in the tangential and radial directions were 15 and 13 MPa, respectively. This indicates that the ratio of the maximum compressive load in the paralleltograin direction to that in the tangential direction is 4.45, and to that in the radial direction is 5.21.

The elastic modulus in compression follows the same trend: paralleltograin E_{11} is 8.75 GPa, in the tangential direction E_{22} is 2.19 GPa, and in the radial direction E_{33} is 1.11 GPa. This implies that compression paralleltograin shows significantly higher elastic modulus than that in the other two orthogonal directions by the ratio of 5.23 for tangential and of 6.55 for radial direction.

The assessment of failure mechanisms concluded that all compression samples paralleltograin direction exhibited a combined mode failure, modes 1 and 2, whereas the perpendiculartograin directions exhibited failure mode 3, longitudinal splitting with crack propagation rupture, in all investigated cases.

The bamboo samples had a moisture content of 7.2% and an ovendry density of 625 kg/m^{3} as captured according to the national bamboo standards ISO 221572019 and ISO 234782022.

Further investigation is required to confirm the applicability of the anisotropic Hill’s plasticity principle to estimate Hill’s yield surface coefficients. This result is important to achieve an accurate numerical modelling of the anisotropy of the mechanical properties of LBL.
As a possible next step, the authors plan to conduct a physical experimental programme on short steelbamboo columns subjected to pure compression. The motivation is that for building lightweight structural applications applying bamboo, it is important to assess the mechanical performance and local buckling mechanism of LBL.
Availability of data and materials
All data generated or analysed during this study are included in this published article are available in figshare repository, which can be accessed from this link, https://figshare.com/s/88840b57648a804cb91f.
Abbreviations
 LBL:

Laminated bamboo lumber
 EBPs:

Engineered bamboo products
 \({E}_{{\text{c}},0}\) :

Modulus of elasticity in compression tests paralleltograin
 \({l}_{1}\) :

The gauge length of the sample
 F _{max} :

The ultimate load
 \({F}_{40}\) :

The applied load at 40% of F_{max}
 \({F}_{10}\) :

The applied load at 10% of F_{max}
 \({\Delta }_{40}\) :

The displacement corresponding to load \({F}_{40}\)
 \({\Delta }_{10}\) :

The displacement corresponding to load \({F}_{10}\)
 \(b\) and \(h\) :

Crosssectional dimensions of the specimen
 \({f}_{{\text{c}},0}\) :

The compressive strength paralleltograin
 \({E}_{{\text{c}},90}\) :

The modulus of elasticity in compression tests perpendiculartograin
 \({h}_{0}\) :

The original sample height
 \(l\) :

Length of the specimen
 \({f}_{{\text{c}},90}\) :

The compressive strength perpendiculartograin
 MC :

Moisture content
 m _{i} :

Hourly mass measurement
 m _{0} :

Original specimen mass
 m _{dry} :

Ovendry test specimens
 \(\rho\) :

The basic dry density
 \({V}_{0}\) :

The initial sample volume
 STD:

Standard of deviation
 COV:

Coefficient of variation
 \({\sigma }_{11}\) :

The ultimate compressive strength paralleltograin direction
 \({\sigma }_{22}\) :

The ultimate compressive strength perpendiculartograin tangential
 \({\sigma }_{33}\) :

The ultimate compressive strength perpendiculartograin radial
 \(\Delta {\varepsilon }{\prime}\) :

The lateral strain increment
 \(\Delta \varepsilon\) :

The axial strain increment
 \({G}_{ij}\) :

Shear moduli in three directions
 \({E}_{ii}\) :

Elastic moduli in three directions
 \({\nu }_{ii}\) :

Poisson’s ratios in three directions
 \({\sigma }^{0}\) :

The reference yield stress
 F, G, H, L, M, and N :

Hill’s yield surface coefficients
 R _{ii} :

Hill’s yield failure ratios
 \(f\) _{11}, \(f\) _{22}, \(f\) _{33} :

Strengths corresponding to compression tests in the three material directions 1, 2, and 3, respectively
 \({f}_{12}\) , \({f}_{23}\) , and \({f}_{13}\) :

Strengths corresponding to shear tests in three planes: the inplane strength in plane 1–2, the outofplane strength in plane 2–3, and the outofplane strength in plane 1–3, respectively
 \({\gamma }_{12}, {\gamma }_{13}\) , and \({\gamma }_{23}\) :

Shear strain in planes 1–2, 1–3, and 2–3, respectively
References
Sharma B, Bauer H, Schickhofer G, Ramage MH (2017) Mechanical characterisation of structural laminated bamboo. Proc Inst Civ Eng Struct Build 170:250–264. https://doi.org/10.1680/jstbu.16.00061
Nugroho N, Ando N (2001) Development of structural composite products made from bamboo II: fundamental properties of laminated bamboo lumber. J Wood Sci 47:237–242. https://doi.org/10.1007/BF01171228
Ohuchi T, Nakahara M, Murase Y (2006) Crosssectional cutting of bamboo with a pair of shearing blades for bamboo cube production. J Wood Sci 52:274–278. https://doi.org/10.1007/s1008600507490
Li H, Wu G, Zhang Q, Su JW (2016) Mechanical evaluation for laminated bamboo lumber along two eccentric compression directions. J Wood Sci 62:503–517. https://doi.org/10.1007/s1008601615841
Zheng Y, Yi B, Tong Y, Peng Z (2020) Influence of assemble patterns on bonding strength of glued bamboo. J Wood Sci 66:60. https://doi.org/10.1186/s1008602001907x
Guan X, Yin H, Lin C, Zhan W (2022) Effect of layups on the mechanical properties of overlaid laminated bamboo lumber made of radial bamboo slices. J Wood Sci 68:1–7. https://doi.org/10.1186/s10086022020470
Hong CK, Li HT, Xiong ZH, Lorenzo R, Corbi I, Corbi O, Wei DD, Yuan CG, Yang D, Zhang HZ (2020) Review of connections for engineered bamboo structures. J Build Eng 30:101324. https://doi.org/10.1016/j.jobe.2020.101324
Hong CK, Li HT, Xiong ZH, Lorenzo R, Li X, Wang Z (2021) Axial compressive behavior of laminated bamboo lumber columns with a chamfered section. Structures 33:678–692. https://doi.org/10.1016/j.istruc.2021.04.083
Yeh MC, Lin YL (2012) Finger joint performance of structural laminated bamboo member. J Wood Sci 58:120–127. https://doi.org/10.1007/s1008601112337
Li HT, Zhang QS, Huang DS, Deeks AJ (2013) Compressive performance of laminated bamboo. Compos Part B Eng 54:319–328. https://doi.org/10.1016/j.compositesb.2013.05.035
Li HT, Su JW, Zhang QS, Deeks AJ, Hui D (2015) Mechanical performance of laminated bamboo column under axial compression. Compos Part B Eng 79:374–382. https://doi.org/10.1016/j.compositesb.2015.04.027
Sharma B, Gatóo A, Bock M, Ramage M (2015) Engineered bamboo for structural applications. Constr Build Mater 81:66–73. https://doi.org/10.1016/j.conbuildmat.2015.01.077
Li HT, Wu G, Zhang QS, Deeks AJ, Su J (2018) Ultimate bending capacity evaluation of laminated bamboo lumber beams. Constr Build Mater 160:365–375. https://doi.org/10.1016/j.conbuildmat.2017.11.058
Tang G, Yin LF, Li ZJ, Li Y, You L (2019) Structural behaviors of bolted connections using laminated bamboo and steel plates. Structures 20:324–339. https://doi.org/10.1016/j.istruc.2019.04.001
Chen G, Yu Y, Li X, He B (2020) Mechanical behavior of laminated bamboo lumber for structural application: an experimental investigation. Eur J Wood Wood Prod 78:53–63. https://doi.org/10.1007/s00107019014869
Zhang H, Li HT, Li YJ, Xiong ZH, Zhang N, Lorenzo R, Ashraf M (2021) Effect of nodes on mechanical properties and microstructure of laminated bamboo lumber units. Constr Build Mater 304:124427. https://doi.org/10.1016/j.conbuildmat.2021.124427
Sharma B, Eley D, Emanuel O, Brentnall C (2021) Mechanical properties of laminated bamboo designed for curvature. Constr Build Mater 300:123937. https://doi.org/10.1016/j.conbuildmat.2021.123937
Gao D, Chen B, Wang L, Tang C, Yuan P (2022) Comparative study on clear specimen strength and member strength of sidepressure laminated bamboo. Adv Civ Eng 2022:1–11. https://doi.org/10.1155/2022/2546792
ISO 23478 (2022) ISO 234782022 Bamboo structures—engineered bamboo products—test methods for determination of physical and mechanical properties
ISO 22157 (2019) Bamboo structures—determination of physical and mechanical properties of bamboo culms—test methods. Switzerland, Int Organ Stand
Goonewardena J, Ashraf M, Reiner J, Kafle B, Subhani M (2022) Constitutive material model for the compressive behaviour of engineered bamboo. Buildings 12:1490. https://doi.org/10.3390/buildings12091490
Saliklis EP, Falk RH (2000) Correlating offaxis tension tests to shear modulus of woodbased panels. J Struct Eng 126:621–625. https://doi.org/10.1061/(ASCE)07339445(2000)126:5(621)
Ramirez F, Correal JF, Yamin LE, Atoche JC, Piscal CM (2012) Dowelbearing strength behavior of glued laminated guadua bamboo. J Mater Civ Eng 24:1378–1387. https://doi.org/10.1061/(ASCE)MT.19435533.0000515
Dauletbek A, Li HT, Lorenzo R (2022) A review of basic mechanical behavior of laminated bamboo lumber. J Renew Mater 10:273–300. https://doi.org/10.32604/jrm.2022.017805
AlRukaibawi LS, Omairey SL, Károlyi G (2021) A numerical anatomybased modelling of bamboo microstructure. Constr Build Mater 308:125036. https://doi.org/10.1016/j.conbuildmat.2021.125036
Saliklis EP, Urbanik TJ, Tokyay B (2003) Bilinear modelling of cellulosic orthotropic nonlinear materials. J Pulp Pap Sci 29:407–411
Hong JP, Barrett JD, Lam F (2011) Threedimensional finite element analysis of the Japanese traditional postandbeam connection. J Wood Sci 57:119–125. https://doi.org/10.1007/s1008601011510
Acknowledgements
Not applicable.
Funding
This work was supported by the Hungarian NKFIH under Grant No. K128584, and by the NRDI Fund of Hungary under Grant TKP2021NVA02. L S AR was supported by the Stipendium Hungaricum scholarship scheme.
Author information
Authors and Affiliations
Contributions
LSA: Conceptualization, Methodology, Writing—original draft, Physical testing, Formal analysis, Validation, Resources. MK: Physical testing, Writing—review and editing. GK: Writing—review and editing, Supervision, Funding acquisition.
Corresponding authors
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
AlRukaibawi, L.S., Kachichian, M. & Károlyi, G. Mechanical properties of laminated bamboo lumber Nfinity according to ISO 234782022. J Wood Sci 70, 1 (2024). https://doi.org/10.1186/s1008602302115z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s1008602302115z