Thibaut B, Gril J (2003) Growth stresses. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. Blackwell, Oxford, pp 137–156
Google Scholar
Moulia B, Coutand B, Lenne C (2006) Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. Am J Bot 93:1477–1489
Article
PubMed
Google Scholar
Gordon JE (1978) Structures, or why things don’t fall down. Penguin Books, Harmondsworth
Book
Google Scholar
Gril J, Thibaut B (1994) Tree mechanics and wood mechanics. Relating hygrothermal recovery of green wood to the maturation process. Ann Sci For 51:329–338
Article
Google Scholar
Gardiner B, Barnett J, Saranpää P, Gril J (2014) The biology of reaction wood. Springer, Berlin
Book
Google Scholar
Okuyama T, Kikata Y (1975) The residual stress distribution in wood logs measured by thin layer removal method (in Japanese). J Soc Mater Sci Jpn 24:845–848
Article
Google Scholar
Doi O, Kataoka K (1967) Determination of principal residual stresses in the anisotropic cylinder (in Japanese). Trans Jpn Soc Mech Eng 33:667–672
Article
Google Scholar
Sasaki Y, Okuyama T, Kikata Y (1981) Determination of residual stress in a cylinder of inhomogeneous anisotropic material I. Mokuzai Gakkaishi 27:270–276
Google Scholar
Sasaki Y, Okuyama T, Kikata Y (1981) Determination of residual stress in a cylinder of inhomogeneous anisotropic material II. Mokuzai Gakkaishi 27:277–282
Google Scholar
Kübler H (1959) Studien über Wachstumsspannungen des Holzes I. Die Ursache der Wachstumsspannungen und die Spannungen quer zur Faserrichtung (in German). Holz Roh-Werk 17:1–9
Article
Google Scholar
Kübler H (1959) Studien über Wachstumsspannungen des Holzes II. Die Spannungen in Faserrichtung (in German). Holz Roh-Werk 17:44–54
Article
Google Scholar
Archer RR, Byrnes FE (1974) On the distribution of growth stresses. Part 1: An anisotropic plane strain theory. Wood Sci Technol 8:184–196
Article
Google Scholar
Fournier M, Alméras T, Clair B, Gril J (2014) Biomechanical action and biological functions. In: Gardiner B, Barnett J, Saranpää P, Gril J (eds) The biology of reaction wood. Springer, Berlin, pp 139–169
Chapter
Google Scholar
Yoshida M, Okuyama T, Yamamoto H (1992) Tree forms and internal stresses II: stresses around the base of the branch. Mokuzai Gakkaishi 38:657–662
Google Scholar
Yoshida M, Okuyama T, Yamamoto H (1992) Tree forms and internal stresses III: growth stresses of branches. Mokuzai Gakkaishi 38:663–668
Google Scholar
Yoshida M, Okuda T, Okuyama T (2000) Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn and Prunus spachiana Kitamura f. ascendens Kitamura. Ann For Sci 57:739–746
Article
Google Scholar
Alméras T, Thibaut B, Gril J (2005) Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees. Trees 19:457–467
Article
Google Scholar
Archer RR, Wilson BF (1970) Mechanics of the compression wood response. I. Preliminary analysis. Plant Physiol 46:550–556
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Reilly OM, Tresierras TM (2011) On the evolution of intrinsic curvature in rod-based models of growth in long slender plant stems. Int J Solids Struct 48:1239–1247
Article
Google Scholar
Castéra P, Morlier V (1991) Growth pattern and bending mechanics of branches. Trees 5:232–238
Article
Google Scholar
Fournier M, Baillères H, Chanson B (1994) Tree biomechanics: growth, cumulative prestresses, and reorientations. Biomimetics 2:229–251
Google Scholar
Yamamoto H, Yoshida M, Okuyama T (2002) Growth stress controls negative gravitropism in woody plant stems. Planta 216:280–292
Article
CAS
PubMed
Google Scholar
Fourcaud T, Lac P (2003) Numerical modelling of shape regulation and growth stresses in trees I. An incremental static finite element formulation. Trees 17:23–30
Article
Google Scholar
Yamamoto H, Okuyama T, Yoshida M, Sugiyama K (1991) Generation process of growth stresses in cell walls. III: growth stress in compression wood. Mokuzai Gakkaishi 37:94–100
CAS
Google Scholar
Burgert I, Okuyama T, Yamamoto H (2003) Generation of radial growth stresses in the big rays of Konara oak trees. J Wood Sci 49:131–134
Article
Google Scholar
Sasaki Y, Okuyama T, Kikata Y (1978) The evolution process of the growth stress in the tree: the surface stresses on the tree. Mokuzai Gakkaishi 24:149–157
Google Scholar
Okuyama T, Sasaki Y, Kikata Y, Kawai N (1981) The seasonal change in growth stress in the tree trunk. Mokuzai Gakkaishi 27:351–355
Google Scholar
Okuyama T, Kawai A, Kikata Y, Sasaki Y (1983) Growth stress and uneven gravitational stimulus in trees containing reaction wood. Mokuzai Gakkaishi 29:190–196
Google Scholar
Yamamoto H, Okuyama T, Iguchi M (1989) Measurement of growth stresses on the surface of a leaning stem (in Japanese). Mokuzai Gakkaishi 35:595–601
Google Scholar
Yoshida M, Okuyama T (2002) Techniques for measuring growth stress on the xylem surface using strain and dial gauges. Holzforschung 56:461–467
Article
CAS
Google Scholar
Jullien D, Gril J (2008) Growth strain assessment at the periphery of small-diameter trees using the two-grooves method: influence of operating parameters estimated by numerical simulations. Wood Sci Technol 42:551–565
Article
CAS
Google Scholar
Archer RR (1986) Growth stresses and strains in trees. Springer, New York
Google Scholar
Clair C, Alteyrac J, Gronvold A, Espejo J, Chanson B, Alméras T (2013) Patterns of longitudinal and tangential maturation stresses in Eucalyptus nitens plantation trees. Ann For Sci 70:801–811
Article
Google Scholar
Fournier M, Chanson B, Thibaut B, Guitard D (1994) Measurements of residual growth strains at the stem surface. Observations on different species. Ann Sci For 51:249–266
Article
Google Scholar
Becker G, Beimgraben T (2001) Occurrence and relevance of growth stresses in Beech (Fagus sylvatica L.) in Central Europe. In: Final report of FAIR-project CT 98-3606. Institut für Forstbenutzung und Forstliche Arbeitwissen-schaft, Albert-Ludwigs Universität, Freiburg, p 323
Jullien D, Widmann R, Loup C, Thibaut T (2013) Relationship between tree morphology and growth stress in mature European beech stands. Ann For Sci 70:133–142
Article
Google Scholar
Jacobs RR (1945) The growth stresses of woody stem. Common For Bur Aust Bull 28:1–64
Google Scholar
Jullien D, Alméras T, Kojima M, Yamamoto H, Cabrolier P (2009) Evaluation of growth stress profiles in tree trunks: comparison of experimental results to a biomechanical model. Proc Sixth Plant Biomech Conf. Cayenne, GF, pp 16–21
Google Scholar
Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev Camb Philos Soc 79:461–472
Article
CAS
PubMed
Google Scholar
Shirai T, Yamamoto H, Matsuo M, Inatsugu M, Yoshida M, Sato S, Sujan KC, Suzuki Y, Toyoshima I, Yamashita N (2016) Negative gravitropism of Ginkgo biloba: growth stress and reaction wood formation. Holzforschung 70:267–274
Article
CAS
Google Scholar
Sugiyama K, Okuyama T, Yamamoto H, Yoshida M (1993) Generation process of growth stresses in cell walls. Relation between longitudinal released strain and chemical composition. Wood Sci Technol 27:257–262
Article
CAS
Google Scholar
Yamamoto H, Ruelle J, Arakawa Y, Yoshida M, Clair B, Gril J (2010) Origin of characteristic properties of gelatinous layer in tension wood from Kunugi Oak (Quercus acutissima). Wood Sci Technol 44:149–163
Article
CAS
Google Scholar
Wardrop AB, Dadswell HE (1955) The nature of reaction wood IV: variations in cell wall organization of tension wood fibers. Aust J Bot 3:177–189
Article
Google Scholar
Yamamoto H, Okuyama T, Yoshida M (1998) Growth stress generation and microfibril angle in reaction wood. In: Butterfield BG (ed) Microfibril angle in wood. International Association of Wood Anatomist, Christchurch, pp 225–239
Google Scholar
Trenard A, Gueneau P (1975) Relations between growth stresses and tension wood in beech. Holzforschung 29:217–218
Article
Google Scholar
Okuyama T, Yamamoto H, Iguchi M, Yoshida M (1990) Generation process of growth stresses in cell walls II: growth stress in tension wood. Mokuzai Gakkaishi 36:797–803
Google Scholar
Yamamoto H, Okuyama T, Sugiyama K, Yoshida M (1992) Generation process of growth stresses in cell walls IV: action of the cellulose microfibril upon the generation of the tensile stresses. Mokuzai Gakkaishi 38:107–113
CAS
Google Scholar
Okuyama T, Yamamoto H, Yoshida M, Hattori Y, Archer RR (1994) Growth stresses in tension wood. Role of microfibrils and lignification. Ann Sci For 51:291–300
Article
Google Scholar
Yamamoto H, Abe K, Arakawa Y, Okuyama T, Gril J (2005) Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. J Wood Sci 51:222–233
Article
CAS
Google Scholar
Clair B, Thibaut B, Sugiyama J (2005) On the detachment of the gelatinous layer in tension wood fiber. J Wood Sci 51:218–221
Article
CAS
Google Scholar
Yamamoto H, Ruelle J, Arakawa,Y, Yoshida M, Clair B, Gril J (2009) Origins of abnormal behaviors of gelatinous layer in tension wood fiber: a micromechanical approach. In: Proceedings of the sixth plant biomechanics conference, Cayenne, pp 297–305
Fang C, Clair B, Gril G, Liu S (2008) Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA J 29:237–246
Article
Google Scholar
Chang SS, Clair B, Gril J, Yamamoto H, Quignard F (2009) Deformation induced by ethanol substitution in normal and tension wood of chestnut and simarouba. Wood Sci Technol 43:701–712
Article
CAS
Google Scholar
Chang SS, Clair B, Ruelle J, Beauchêne J, Di Renzo F, Quignard F, Zhao GJ, Yamamoto H, Gril J (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60:3023–3030
Article
CAS
PubMed
Google Scholar
Clair B, Alméras T, Yamamoto H, Okuyama T, Sugiyama J (2006) Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophys J 91:1128–1135
Article
CAS
PubMed
PubMed Central
Google Scholar
Clair B, Alméras T, Pilate G, Jullien D, Sugiyama J, Riekel C (2011) Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol 155:562–570
Article
CAS
PubMed
Google Scholar
Yoshida M, Ohta H, Yamamoto H, Okuyama T (2002) Tensile growth stress and lignin content in the cell walls of yellow poplar, Liriodendron tulipifera Linn. Trees 16:457–464
Article
CAS
Google Scholar
Clair B, Ruelle J, Beauchêne J, Prévost MF, Fournier M (2007) Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurence and efficiency of G-layer. IAWA J 27:329–338
Google Scholar
Roussel JR, Clair B (2015) Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress. Tree Physiol 35:1366–1377
Article
PubMed
Google Scholar
Ruelle J, Yamamoto H, Thibaut B (2007) Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperm species. Bioresources 2:235–251
CAS
Google Scholar
Jacobs MR (1938) The fibre tension of woody stems with special reference to the genus eucalyptus. Commonw For Bur Aust Bull 22:1–39
Google Scholar
Munch E (1938) Statik und Dynamik des Schraubigen Baus der Zwellwand, besonders der Druk- und Zugholzes (in German). Flora 32:357–424
Google Scholar
Wardrop AB (1965) The formation and function of reaction wood. In: Cote WA Jr (ed) Cellular structure of woody plants. Syracuse University Press, New York, pp 373–390
Google Scholar
Bamber RK (1978) The origin of growth stresses. In: Contributed paper. IUFRO conference, Philippines, pp 1–7
Clair B, Ruelle J, Thibaut B (2003) Relationship between growth stress, mechanical–physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa Mill.). Holzforschung 57:189–195
CAS
Google Scholar
Mellerowicz EJ, Immerzeer P, Hayashi T (2008) Xyloglucan: the molecular muscle of trees. Ann Bot 102:659–665
Article
CAS
PubMed
PubMed Central
Google Scholar
Alméras T, Clair B, Gril J (2009) The origin of maturation stress in tension wood: using a wide range of observations to assess hypothetic mechanistic models. In: Hofstetter K (ed) COST FP0802 workshop on experimental and computational methods in wood micromechanics. COST FP0802 workshop, Vienna, pp 105–106
Google Scholar
Hayashi T, Kaida R, Kaku T, Baba K (2010) Loosening xyloglucan prevents tensile stress in tree stem bending but accelerates the enzymatic degradation of cellulose. Russ J Plant Physiol 57:316–320
Article
CAS
Google Scholar
Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell wall structure and composition. J Exp Bot 63:551–565
Article
CAS
PubMed
Google Scholar
Gorshkova T, Mokshina N, Chernova T, Ibragimova N, Salnikov V, Mikshina P, Tryfona T, Banasiak A, Immerzeel P, Dupree P, Mellerowicz EJ (2015) Aspen tension wood fibers contain beta-(1 → 4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol 169:2048–2063
CAS
PubMed
PubMed Central
Google Scholar
Watanabe H (1965) A study of the origin of longitudinal growth stresses in tree stems. Proceedings of the IUFRO congress. IUFRO, Melbourne, pp 1–17
Google Scholar
Boyd JD (1972) Tree growth stresses. V. Evidence of an origin in differentiation and lignification. Wood Sci Technol 6:251–262
Article
Google Scholar
Wood JR, Goring DAI (1971) The distribution of lignin in stem wood and branch wood of Douglas fir. Pulp Pap Mag Can 72:T95–T102
CAS
Google Scholar
Fujita M, Saiki H, Harada H (1978) The secondary wall formation of compression wood tracheids II. Cell wall thickening and lignification. Mokuzai Gakkaishi 24:158–163
Google Scholar
Okuyama T, Takeda H, Yamamoto H, Yoshida M (1998) Relation between growth stress and lignin concentration in the cell wall. Ultraviolet microscopic spectral analysis. J Wood Sci 44:83–89
Article
CAS
Google Scholar
Hiraide H, Yoshida M, Ihara K, Sato S, Yamamoto H (2014) High lignin deposition on the outer region of the secondary wall middle layer in compression wood matches the expression of a laccase gene in Chamaecyparis obtusa. J Plant Biol Res 3:87–100
Google Scholar
Burgert I, Eder M, Gierlinger N, Fratzl P (2007) Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. Planta 226:981–987
Article
CAS
PubMed
Google Scholar
Wilson BF (1981) The development of growth strains and stresses in reaction wood. In: Barnet JR (ed) Xylem cell development. Castel House, Turnbridge Wells, pp 255–290
Google Scholar
Okuyama T, Kawai A, Kikata Y, Yamamoto H (1986) The growth stresses in reaction wood. In: Proceedings of the XVIII IUFRO world congress, Yugoslavia, pp 249–260
Yamamoto H, Okuyama T (1988) Analysis of the generation process of growth stresses in cell walls (in Japanese). Mokuzai Gakkaishi 34:788–793
Google Scholar
Barber NF, Meylan BA (1964) The anisotropic shrinkage of wood. A theoretical model. Holzforschung 18:146–156
Article
Google Scholar
Yamamoto H, Almeras T (2007) Mathematical verification of reinforced-matrix hypothesis by Mori-Tanaka theory. J Wood Sci 53:505–509
Article
Google Scholar
Yamamoto H, Okuyama T, Yoshida M (1994) Micromechanics of growth stress generation in wood cell wall. In: Proceedings of the fourth international conference on residual stress, Baltimore, pp 870–878
Yamamoto H, Okuyama T, Yoshida M (1995) Generation process of growth stresses in cell walls VI. Analysis of the growth stress generation by using a cell model having three layers (S1, S2, and I + P). Mokuzai Gakkaishi 41:1–8
Google Scholar
Yamamoto H (1998) Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Sci Technol 32:171–182
Article
CAS
Google Scholar
Yamamoto H, Okuyama T, Yoshida M (1993) Generation process of growth stresses in cell walls. V. Model of tensile stress generation in gelatinous fibers. Mokuzai Gakkaishi 39:118–125
Google Scholar
Yamamoto H (2004) Role of the gelatinous layer on the origin of the physical properties of the tension wood. J Wood Sci 50:197–208
Article
CAS
Google Scholar
Terashima N (1990) A new mechanism for formation of a structurally ordered protolignin macromolecule in the cell wall of tree xylem. J Pulp Pap Sci 16:J150–J155
CAS
Google Scholar
Gril J, Sassus F, Yamamoto H, Guitard D (1999) Maturation and drying strain of wood in longitudinal direction: a single-fiber mechanical model. In: Proceedings of the third workshop on connection between silviculture and wood quality through modelling approaches and simulation software, La Londe-Les-Maures, pp 309–314
Alméras T, Gril J, Yamamoto H (2005) Modelling anisotropic maturation strains in wood in relation with fibre boundary conditions, microstructure and maturation kinetics. Holzforschung 59:347–353
Article
CAS
Google Scholar
Toba K, Yamamoto H, Yoshida M (2013) Micromechanical detection of growth stress in wood cell wall by wide angle X-ray diffraction (WAX). Holzforschung 67:315–323
Article
CAS
Google Scholar
Abe K, Yamamoto H (2006) Change in mechanical interaction between cellulose microfibril and matrix substance in wood cell wall induced by hygrothermal treatment. J Wood Sci 52:107–110
Article
Google Scholar
Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing CCT of trees. Plant Cell Physiol 48:843–855
Article
CAS
PubMed
Google Scholar
Baba K, Park YW, Kaku T, Kaida R, Takeuchi M, Yoshida M, Hosoo Y, Ojio Y, Okuyama T, Taniguchi T (2009) Xyloglucan for generating tensile stress to bend tree stem. Mol Plant 2:893–903
Article
CAS
PubMed
Google Scholar
Goswami L, Dunlop JWC, Jungnikl K, Eder M, Gierlinger N, Coutand C, Jeronimidis G, Fratzl P, Burgert I (2008) Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. Plant J 56:531–538
Article
CAS
PubMed
Google Scholar
Clair B, Gril J, Di Renzo F, Yamamoto H, Quignard F (2008) Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules 9:494–498
Article
CAS
PubMed
Google Scholar
Alméras T, Clair B (2016) Critical review on the mechanisms of maturation stress generation in trees. J R Soc Interface 13:20160550. doi:10.1098/rsif.2016.0550
Article
PubMed
PubMed Central
Google Scholar
Boyd JD, Schuster KB (1972) Tree growth stresses. IV. Visco-elastic strain recovery. Wood Sci Technol 6:95–120
Article
Google Scholar
Kübler H (1959) Studien über wachstumsspannungen des holzes III. Längenänderungen bei der wärmebehandlung frischen holzes (in German). Holz Roh-Werk 17:77–86
Article
Google Scholar
Gril J, Berrada E, Thibaut B (1993) Recouvrance hygrothermique du bois vert II. Variations dans le plan transverse chez le Châtaignier et l’Epicéa et modélisation de la fissuration à coeur induite par l’étuvage (Hygrothermal recovery of green wood. II. Transverse variations in chestnut and spruce and modelling of the steaming-induced heart checking). Ann Sci For 50:487–508
Article
Google Scholar
Kübler H (1988) Growth stresses and related wood properties. For Prod Abs 10:61–119
Google Scholar
Goring DAI (1963) Thermal softening of lignin, hemicellulose and cellulose. Pulp Pap Mag Can 64:T517–T527
CAS
Google Scholar
Tejada A, Okuyama T, Yamamoto H, Yoshida M, Imai T, Itoh T (1998) Studies on the softening point of wood powder as a basis for understanding the release of residual growth stress in logs. For Prod J 48:84–90
CAS
Google Scholar
Koehler A (1933) Effect of heating wet wood on its subsequent dimensions. Am Wood Preserv Assoc 29:376–388
Google Scholar
Mac Lean JD (1952) Effect of temperature on the dimensions of green wood. Am Wood Preserv Assoc 48:376–388
Google Scholar
Grzeczynsky T (1962) Einfluss der Erwärmung im Wasser auf vorübergehende und bleibende Formänderungen frischen Rotbuchen-Holzes (in German). Holz Roh-Werk 20:210–216
Article
Google Scholar
Yokota T, Tarkow H (1962) Changes in dimension on heating green wood. For Prod J 12:43–45
CAS
Google Scholar
Sasaki Y, Okuyama T (1983) Residual stress and dimensional change on heating green wood. Mokuzai Gakkaishi 29:302–307
Google Scholar
Gril J, Berrada E, Thibaut B, Martin G (1993) Recouvrance hygrothermique du bois vert I. Influence de la température. Cas du jujubier (Ziziphus lotus (L) Lam) (in French). Ann Sci For 50:57–70
Article
Google Scholar
Jullien D, Gril J (1996) Mesure des déformations bloquées dans un disque de bois vert. Méthode de la fermeture (in French). Ann Sci For 53:955–966
Article
Google Scholar
Clair B (2012) Evidence that release of internal stress contributes to drying strains of wood. Holzforschung 66:349–353
Article
CAS
Google Scholar
Sujan KC, Yamamoto H, Matsuo M, Yoshida M, Naito K, Shirai T (2015) Continuum contraction of tension wood fiber induced by repetitive hygrothermal treatment. Wood Sci Technol 49:1157–1169
Article
CAS
Google Scholar
Sujan KC, Yamamoto H, Matsuo M, Yoshida M, Naito K, Suzuki Y, Yamashita N, Yamaji FM (2016) Is hygrothermal recovery of tension wood temperature-dependent? Wood Sci Technol 50:759–772
Article
CAS
Google Scholar
Tanaka M, Yamamoto H, Kojima M, Yoshida M, Matsuo M, Lahjie AM, Hongo I, Arizono T (2014) The interrelation between microfibril angle (MFA) and hygrothermal recovery in compression wood and normal wood of sugi and agathis. Holzforschung 68:823–830
CAS
Google Scholar
Tanaka M, Yamamoto H, Yoshida M, Matsuo M, Lahjie AM (2015) Retarded recovery of remaining growth stress in Agathis wood specimen caused by drying and subsequent re-swelling treatments. Eur J Wood Prod 73:289–298
Article
CAS
Google Scholar
Matsuo MU, Niimi G, Sujan KC, Yoshida M, Yamamoto H (2016) Hygrothermal recovery of compression wood in relation to elastic growth stress and its physicochemical characteristics. J Mater Sci 51:7956–7965
Article
CAS
Google Scholar
Bardet S, Gril J, Kojiro K (2012) Thermal strain of green hinoki wood. Separating the hygrothermal recovery and the reversible deformation. In: Frémond M, Maceri F (eds) Lecture notes in applied and computational mechanics, vol 61. Springer, Berlin, pp 157–162
Google Scholar
Gril J, Fournier M (1993) Contraintes d’élaboration du bois dans l’arbre: un modèle multicouche viscoélastique (in French). In: 11ème Congrès Français de Mécanique, vol 4. Association Universitaire de Mécanique, Lille-Villeneuve d’Ascq, pp 165–168
Bardet S, Gril J (2002) Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements. C R Acad Sci Sér 2B(330):549–556
Google Scholar
Vincent P, Bardet S, Tordjeman P, Gril J (2004) Influence of temperature on the torsional behaviour of small clear-wood specimens in green state. In: Morlier P, Morais J, Dourado N (eds) Proceedings of the third international conference of the European Society for Wood Mechanics. UTAD, Vila Real, pp 119–124
Google Scholar
Dlouhá J, Clair B, Arnould O, Horáček P, Gril J (2009) On the time-temperature equivalency in green wood: characterisation of viscoelastic properties in longitudinal direction. Holzforschung 63:327–333
Article
CAS
Google Scholar
Gril J (1991) Maturation et viscoelasticité du bois en croissance et recouvrance hygrothermique (in French). In: Thibaut B (ed) 3ème séminaire architecture. Structure et Mécanique de l’Arbre, Montpellier, pp 153–158
Google Scholar
Gril J (1992) Rheology of in-tree wood and hygrothermal recovery. In: Abstract of IUFRO all division 5 conference. Arbolor, Nancy, p 185
Guitard D (1987) Mécanique du matériau bois et composites (in French). Coll. Nabla, Cepadues-éditions, Toulouse
Google Scholar
Bandyopadhyay N, Archer RR (1979) Relief of growth stress in planks. Holzforschung 33:43–46
Article
Google Scholar
Okuyama T, Sasaki Y (1979) Crooking during lumbering due to residual stresses in the tree. Mokuzai Gakkaishi 25:681–687
Google Scholar
Maeglin RR (1987) Juvenile wood, tension wood, and growth stress effects on processing hardwoods. Applying the latest research to hardwood problems (proceedings of the 15th annual hardwood symposium of the Hardwood Research Council). Hardwood Res Council, Memphis, pp 100–108
Google Scholar
Jullien D, Laghdir A, Gril J (2003) Modelling log-end cracks due to growth stresses: calculation of the elastic energy release rate. Holzforschung 57:407–414
Article
CAS
Google Scholar
Yang JL (2005) The impact of log-end splits and spring on sawn recovery of 32-year-old plantation Eucalyptus globulus Labill. Holz Roh-Wer 63:442–448
Article
Google Scholar
Clair B, Thibaut B (2014) Physical and mechanical properties of reaction wood. In: Gardiner B, Barnett J, Saranpää P, Gril J (eds) The biology of reaction wood. Springer, Berlin, pp 171–200
Chapter
Google Scholar
Gardiner B, Flatman T, Thibaut B (2014) Commercial implication of reaction wood and the influence of forest management. In: Gardiner B, Barnett J, Saranpää P, Gril J (eds) The biology of reaction wood. Springer, Berlin, pp 249–274
Chapter
Google Scholar
Okuyama T, Doldan D, Yamamoto H, Ona T (2004) Heart splitting at crosscutting of Eucalyptus grandis logs. J Wood Sci 50:1–6
Article
Google Scholar
Jullien D, Gril J (2002) Modelling crack propagation due to growth stress release in round wood. J Phys IV 105:265–272
Google Scholar
Maeglin RR, Liu JY, Boone S (1985) High-temperature drying and equalizing: effects on stress relief in yellow poplar lumber. Wood Fiber Sci 17:240–253
Google Scholar
Okuyama T, Kanagawa Y, Hattori Y (1987) Reduction of residual stresses in logs by direct heating method. Mokuzai Gakkaishi 33:837–843
Google Scholar
Tejada A, Okuyama T, Yamamoto H, Yoshida M (1997) Reduction of growth stress in logs by direct heat treatment. Assessment of a commercial-scale operation. For Prod J 47:88–93
Google Scholar
Okuyama T, Yamamoto H (1992) The residual stresses in living tree. In: Fujiwara H, Tabe T, Tanaka K (eds) Residual stresses-III. Elsevier, Barking, pp 128–133
Google Scholar
Nogi M, Yamamoto H, Okuyama T (2003) Relaxation mechanism of residual stresses inside logs by heat treatment: deciding of the heating time and temperature to release residual stresses. J Wood Sci 49:22–28
Article
Google Scholar
Huang YS, Chen SS, Kuo-Huang LL, Lee MC (2005) Growth stress of Zelkova serrata and its reduction by heat treatment. For Prod J 55:88–93
Google Scholar
Severo ETD, Calonego FW, Matos CAO (2010) Lumber quality of Eucalyptus grandis as a function of diametrical position and log steaming. Bioresour Technol 101:2545–2548
Article
CAS
PubMed
Google Scholar